ELF>j@@8 @ $$Ȇ $$  888$$ Std Ptd,,QtdRtd$$ppGNUta_ :Wt`7s|@ |~BE|qXG~za,~,q/ kF"Zr]A'#81Da -~C c! P! ODu@Po$'ZBv(71 hB , NW>V@$iX$]@$ Ps__gmon_start___ITM_deregisterTMCloneTable_ITM_registerTMCloneTable__cxa_finalizelibcrypto.so.1.1libm.so.6libpython3.6m.so.1.0libpthread.so.0libc.so.6PyTuple_Type_Py_NoneStructPyObject_FreePyObject_CallObjectPyExc_KeyErrorPyErr_SetString_PyObject_NewPyThreadState_GetDictPyDict_SetItemPyType_IsSubtypePyExc_TypeErrorPyExc_RuntimeErrorPyThreadState_GetPyDict_GetItemWithErrorPyErr_OccurredPyArg_ParseTupleAndKeywords__stack_chk_failPyDict_New_Py_FalseStruct_Py_TrueStructPyUnicode_FromFormatPyLong_FromLongPyList_NewPyList_AppendPyErr_SetObjectPyErr_NoMemoryPyLong_AsSsize_tPyExc_ValueErrorPyList_AsTuplePyTuple_SizePyLong_AsLongPyMem_MallocsnprintfPyMem_Free__snprintf_chkPyUnicode_CompareWithASCIIString__strcat_chkPyObject_GenericGetAttrPyUnicode_NewmemcpyPyObject_IsTruePyDict_SizePyErr_Clear_Py_NotImplementedStructPyUnicode_ComparembstowcsPyUnicode_FromWideCharPyUnicode_AsUTF8StringstrcmpPyErr_FormatPyLong_FromSsize_tPyObject_GenericSetAttrPyExc_AttributeErrormemsetstderr__fprintf_chkfputcabortPyUnicode_FromString_Py_ascii_whitespace_PyUnicode_IsWhitespace_PyUnicode_ToDecimalDigit_PyUnicode_ReadyPy_BuildValue__memcpy_chkPyList_SizePyList_GetItem__ctype_b_loc__errno_locationstrtollPyArg_ParseTuplePyFloat_FromStringPyFloat_AsDoublePyComplex_FromDoublesPyUnicode_AsUTF8AndSizestrlenPyUnicode_DecodeUTF8memmove__ctype_tolower_locPyDict_GetItemStringlocaleconvPyLong_FromUnsignedLongPyTuple_NewPyObject_CallFunctionObjArgs_PyLong_NewPyExc_OverflowError_PyLong_GCDPyTuple_PackceilPyFloat_TypePyBool_FromLongPyComplex_TypePyObject_IsInstancePyObject_GetAttrStringPyComplex_AsCComplexPyFloat_FromDoublePyInit__decimalPyMem_ReallocPyLong_TypePyBaseObject_TypePyType_ReadyPyDict_SetItemStringPyImport_ImportModulePyObject_CallMethodPyType_TypePyObject_CallFunctionPyModule_Create2PyModule_AddObjectPyExc_ArithmeticErrorPyErr_NewExceptionPyExc_ZeroDivisionErrorPyUnicode_InternFromStringPyModule_AddStringConstantPyModule_AddIntConstantfreerealloccallocmallocPyObject_HashNotImplementedPyType_GenericNew_edata__bss_start_endGLIBC_2.2.5GLIBC_2.4GLIBC_2.14GLIBC_2.3.4GLIBC_2.3f ui n ui nii zti ii ui n$$$$$($ $h$`$$ $$$$ $$'$5$E$U$`8{$x{$Ll{$${${$|$$H|$|$|$}$ $x~$~$(~$$~$$~$`~$0#$ $($`H$ $X$$$`$b0$0X$$$$P$`!$$ $$$($pK8$p$l$$$$$q$$ (($v0$8$P${X$`$x$$$`$$0$Ȃ$Ђ$؂$@ $($ @$H$$$$$$$$$] $X($0$8$@$H$pK$>$$$[$z $($g8$@\$@$H$qX$[$`$h$ox$Z$$Š$$Y$$͊$ $Y$$׊ȅ$>؅$W$$$$V$$$0A$`U$ $($8$ T$@$H$cX$`S$`$h$6x$`R$$$8$Q$$w$$@Q$$-Ȇ$P؆$P$$|$$P$$5$0 $`O$ $=($ 8$ N$@$IH$PX$`J$`$Rh$bx$H$$a$d$G$$e$$F$$rȇ$؇$`F$$|$$E$$$@$`E$ $($p8$E$@$H$@X$D$`$h$x$D$$$@N$C$$$$B$$Ȉ$؈$A$$ȋ$p$ A$$h$ $`@$ $ы($p8$ @$@$ۋH$X$`?$`$h$x$>$$$P$=$$$$<$$ȉ$01؉$ <$$ $$8$$$K$ 7$ $%($p:8$ 3$@$3H$;X$ 1$`$Eh$0 x$@/$$O$$-$$\$$`-$$hȊ$#؊$,$$s$P-$`,$$$G$ *$ $($`8$@)$@$H$3X$ '$`$h$x$%$$$N$$$$ˆ$>$#$$ȋ$$$$$% $($L@$ȌH$@Q`$Ҍh$Q$ی$P$$>$Ȍ$M$$ $($P8$x$@$H$fX$x$`$h$px$ x$$$n$w$$NJ$$`w$$Šȍ$؍$w$$͊$$v$$׊$>$@v$ $Ҋ($P8$u$@$H$BX$`u$`$h$pCx$t$$$B$t$$$0j$@t$$Ȏ$؎$t$$$$s$$$$`s$ $ ($y8$ s$@$H$PYX$r$`$h$@Zx$`r$$w$$r$$-$$q$$|ȏ$P؏$@q$$5$$p$$#$ $p$ $=($8$@p$@$IH$pX$o$`$,h$0\x$@o$$R$`c$n$$6$$ n$$?Ȑ$ؐ$k$$a$~$`k$$E$$j$ $K($08$i$@$ۋH$`X$i$`$eh$x$@i$$r$$h$$|$0$h$$ȑ$ؑ$ h$$$$g$$$$`g$ $($8$g$@$H$X$f$`$h$Px$@f$$$?$e$$P$$hȒ$Pؒ$e$$$$@e$$W$`$e$ $($8$d$@$H$X$@d$`$h$p0x$d$$ $P$c$$d$"$@c$$ȓ$Mؓ$b$$%$$b$$3$$b$ $E($8$a$@$\H$X$a$`$hh$ x$@a$$s$`$a$$$`I$`$$OȔ$ؔ$@`$$$$_$$$@5$_$ $r($8$@_$@$~H$X$_$`$h$$$1$l$$^$$ȕ$ ؕ$]$$$r$ ]$ $($8$z$@$H$X$@z$`$ɍh$ x$y$$֍$ߍ$Ж$($0$z$@$ $p$$ $$$$ȗ$$$$$ $($@$H$`$h$$$$$$$Ș$$$$$ $($@$H$`$h$$$$$$ș$$$$$$ $c($0$@$qH$P${X$v`$h$p$xx$$$$$$Z$.$$.$.$.$:$. $.($.0$׎8$@$JH$P$`$p$$$$$$Л$$$$$ $.($&@$GH$?`$`h$X${$s$$$$.$& $׎($ώ@$H$`$h$$$$$ $:ȝ$2$J$B$Z$R($0$8$ @$ H$P$X$`$h$ p$'x$6$7$>$B$L$N$O$S$V$Z$c$h$o$p$u$v$x{$G{$g{$.{$M{$k{$eP}$e~$eX|$P$R@$R@$H$P$X$`$h$p$ x$ $ $$$$$$$$$$$$$$$$$!$"$# $$($%0$&8$(@$)H$*P$+X$,`$-h$/p$0x$1$2$3$4$5$7$8$9$:$;$<$=$?$@$A$C$D$E$F$H$I $J($K0$Q8$R@$TH$UP$WX$X`$Yh$[p$\x$]$^$_$`$a$b$d$e$f$i$j$l$m$n$q$r$s$t$w$y$z ${HH!#HtH5J#%K#hhhhhhhhqhah Qh Ah 1h !h hhhhhhhhhhqhahQhAh1h!hhhh h!h"h#h$h%h&h'qh(ah)Qh*Ah+1h,!h-h.h/h0h1h2h3h4h5h6h7qh8ah9Qh:Ah;1h<!h=h>h?h@hAhBhChDhEhFhGqhHahIQhJAhK1hL!hMhNhOhPhQhRhShThUhVhWqhXahYQhZAh[1h\!%u#D%m#D%e#D%]#D%U#D%M#D%E#D%=#D%5#D%-#D%%#D%#D%#D% #D%#D%#D%#D%#D%#D%ݶ#D%ն#D%Ͷ#D%Ŷ#D%#D%#D%#D%#D%#D%#D%#D%#D%}#D%u#D%m#D%e#D%]#D%U#D%M#D%E#D%=#D%5#D%-#D%%#D%#D%#D% #D%#D%#D%#D%#D%#D%ݵ#D%յ#D%͵#D%ŵ#D%#D%#D%#D%#D%#D%#D%#D%#D%}#D%u#D%m#D%e#D%]#D%U#D%M#D%E#D%=#D%5#D%-#D%%#D%#D%#D% #D%#D%#D%#D%#D%#D%ݴ#D%մ#D%ʹ#D%Ŵ#D%#D%#D%#D%#D%#D%#DHWR0vH+t&1owH+HCHuHKH1Q0PwHCH1P0?wHCHP0xHHu;H #H5H9@1DxH+t17xHSHR01&xH93$ xH93$xH93$xHxHPHR0xHPHR0xH=#H5 1H?xyH #H51H9xHEHP0xHmxHUHR0xxI,$HD$ID$zIL$LQ0HD$yHmt1cH #cHUH1R0cH1H5ndH%(H$1H YH0$H8t)LOIL@EDPLDPLEH LHPH=H1t$H$t$P$t$X$t$`$t$h$t$p$t$xH$L$LD$xHT$pH$IHpH$dH3 %(tHĨI,$pzML$LAQ0_zH *#H5+H9DzMD$LAP03z)zH‰H { {H;desH+\eHsHV0MeH?eQeH#H5H8AcLCHAP0cH{Hj{H{Ha{NfHa#fHm#f1f1qgH#H51H:TgH#HH5LH81r1gJIL9@鲀H|IHHL9tHSHMQII9t MQ6IAIH#NJHTIHH{HtH:鶃H IhLMHt MH靃IHIH=5#H5H?fH=#H5H?.g[]A\H9tDH#NJH9AAA0IDLL)LGHHL$Iϗ.HH1HC(H $1鳚11<E1IL9t,J4HtA IkH1IH I1I#NJ1L9HII)LHI<uTHHuHHD$鹟H TH9HHH |1I<uHHu֞1벸ȞIVI;t ciMvH|$Lt$[龡1gSHw#Al1H HH;tH;1H^H3 SH$#AS1H -HH;!H;1H H3 1IƤ~I9ЃH#NJH9ЃHrN H9wHH9Ѓ øH$h1H$iHؾ1HL*HH1I41H!HHH$kÃ=mH #H5H91mL#H5I81mEHmH51#H9w "D fHCK @+EH(HL$D$m|$HC(u H߬#HC H5Ϭ#H9w !fHCKD eVH(HL$D$(m|$HC(u H~#HC Lc(H;k  fHC1C AM]HH门H֨11a\CE16A>ժA<陪LY#A;1E1A$ IA$ IjI9K E1HJIL9wHT$Ht$HIHL$0MH LT$(OH|$(L\$0H/H|$HLL\$(E1yyHT$Ht$(L\$HJIL9wH HT$HMML\$H|$HJ/H|$ HX[]A\A]A^A_yLL-E1IM9vJIHT$Ht$HIHL$0J MLT$(耯L\$0H|$(,3fLk(1HCC@3A $6H+t 71mHCHP0H+t 1mHCHP0H9HMI9t8E tI9mHHp HHsmIMmHL$~D$HD$HD$EmLSH]#LK MZI9LLM9t  tM9.KHCbHHLtLSLC(HHL˰[ u H5#H9w BfCT t`H9˲HT$H荰鹲I|H{H(HL$D$+h|$HC(uH #HK HT$HFbHT$HHwfL\$(LL$XE1LKtILKtLދL$$MHII9uL\$XE1LD$`IIsJ LH9tLLHHLFL HLD$`L\$hL9uE1IMMH}LIHLEKLIJLHLH)H)HI9uL\$XM1M I|$LLHHM $H)ODIH)ODMHH9uImti14MMHD$LAQ0I.HD$MVHD$LAR0HD$I.u M^LAS0ImuImLU01ҸMeLAT$01鿸1(1!HHt$8LLHT$7Ht$(H$Hd$Ht$ HHL$HHH4H;$tMM鋺1nMIݻKH|$A$ALL$L $IMHL$HHLLMqLL$L$jH-p#A\1H yH H}lH}1HUHu AGMHHKH #H5H9L ٣#H5I9iL1H)t I1lHT$HԬH_HW(H|t~$w;N$H5Lc,I>A~(HGt HH+HGL'A-9u1蘞A@ u3LLHIhH}HH+}I|$7V뼺EHt$LL$HT$D$;uAHrLLd$H|$PD$ 0HH|$HLD$HD$@I<$Ht$tjH9LLLD$0HHHLHIrLd$8Ld$ HL5K$HHAHHLLd$ $H,$~$L,$AAA0$DL$ )D$0HD$01LLl$8Lt$HHD$(HJ4IL6HHt=LLd$ LLRDt$ AA Dt$ 뉽@HH?H9uuH HL|$MAHT$HFIۅt LT$IZRHT$H诜D$`t8vH|$`##fL|$MAHT$HөIH$#D$`HT$H輜LM(EM`HT$H菩LM(EMCHt$H} H^HH9#HHM5#H9t E t+H9I)L9CL)MHI)L9@uH|$8z#|$H@HD$HS#HD$HD$H|$89#D$HD$uHD$H#HD$HHUHSLHdH%(HD$1LD$D$D$ AtHھH-HD$dH3%(tH[]HMHu(H|H+t1iHCH1P0iHKHs(H| H+t1?jHCH1P0.jH+t1 HSH1R0 LLHG(kH+t1pH+uHSH1R0pHCH1P0pME tBL9!HT$H~7HEAI?LMH9w4HHT$HUHT$H˘ Q1HL$HD$]|$HC(u H)#HS DLL9-#LMO8HM5#L9t@AG tAML9!HT$,L蜥3H\$,H9aHL聥QMHT$,Lwt MW@MMI.t#E1HT$,LϗD$,MfLE1AT$0L#H5E1I8yHT$,L肗PIHL9sQ@NbI^M9|*H9#HMw8HM5כ#L9t$AG t"IL94KI9IHT$,LttIMW@HT$,LJMHmRqLEH1AP0pH|$H/uLOAQ0H|$H/qLWAR0pH|$H/uLWAR0H|$H//rL_AS0qH+rLKH1AQ0q1}rH|$H/MsHwV0'sH+7sHKH1Q0 sH|$H/sHwV0sH+sHKH1Q0sH|$H/tHwV0tH+tHKH1Q0tHWHD$R0HD$t1tHL#H>uH<#HNvH,#H^wH#HwHmLEH1AP0LH|$H/uLOAQ0H|$H/tLWAR0HmLEH1AP0dH|$H/uLOAQ0H|$H/LWAR05HmyLEH1AP0yH|$H/uLOAQ0H|$H/yLWAR0iyHmaLEH1AP0 H|$H/uLOAQ0H|$H/-LWAR0HmzLEH1AP0@zH|$H/uLOAQ0H|$H/azLWAR0zHm{LEH1AP04{H|$H/uLOAQ0H|$H/U{LWAR0{H|$H/tH|$H/LWAR0ZLOAQ0H|$H/{HwV0{H+{HKH1Q0{H|$H/O|HwV0)|H+9|HKH1Q0|H|$H/|HwV0|H+|HKH1Q0|H|$H/c}HwV0=}H+M}HKH1Q0"}H+8~HKH1Q0}LLLLLD$Q\LD$}AD$}H|$ H/}HwV0}Ho1U0 HOQ0~t9HL$Q~H|$H/uLWAR0H|$H/ L_AS0~H#H5 1H8z~t(HL$zIQHD$LR0LD$ HD$H#H5H8.1H#HH|$(H/HwV01EtoHL$GH+LSH1AR0LGAP0鴀H|$H/uL_AS0H|$H/܀HGP0駀HW1R0陀H#H51H8j|t/HL$BH|$H/uLWAR0H|$H/tb1ɁH#H51H8鬁H|$H/uH_1S0铁HmuLMH1AQ0zHOQ0ML_AS0aHo1U0ǂHOQ0閂H|$H/uLWAR0H|$H/ĂL_AS0錂t HL$ɁHʓ#H51H8Q\Ho1U0ރHOQ0魃H|$H/uLWAR0H|$H/ۃL_AS0飃Nt HL$HQ#H5j1H8sHo1U0HOQ0ĄH|$H/uLWAR0H|$H/L_AS0麄t HL$Hؒ#H51H8_銄Ho1U0HOQ0ۅH|$H/uLWAR0H|$H/L_AS0Ʌ\t HL$H_#H5x1H8际H|$H/uLOAQ0H|$H/t-1HmuLEH1AP0L_AS0ILWAR0H|$H/uLOAQ0H|$H/t1fL_AS0閆LWAR0L1DLM`u1( IL@lH#HHL$HD$ER|$HC(u L#LS DF#HT$HI%HT$HG% t?M9HT$LHI]xEcI9EAAD|$9HT$LH魋HH9҃ T$H TH9EAA DD$H|$AJ1HHwwAuIE tH95HT$HV HT$HWH8[]A\A]A^A_H#NJH9҃T$^I鴊Ho1U0ύHOQ0馍H|$H/uLWAR0H|$H/֍L_AS0锍t HL$ٌH#H51H8dHm%LEH1AP0i%H|$H/uLOAQ0H|$H/%LWAR0:%E tQH9LHLD$!LD$H([]A\A]A^A_HEA髎H@LHLD$LD$$ tIL9FLH躗6H|$AL L1IHw[AuL H麐LH芊I]xEcI9EAAH#NJH9EAA郍Ho1U0RHOQ0)H|$H/uLWAR0H|$H/YL_AS0t HL$\H#H51H8DHm1%LEH1AP0$H|$H/uLOAQ0H|$H/$LWAR0$H]xEcH9EAAI#NJI9EAAϓ$ L9H$H饘Ht$NL1IHwcuNI,E tH9H$HЕ H$H҈ےH([]A\A]A^A_H$H诈&麖`taHL$邚HOQ0H|$H/uLWAR0H|$H/t 1H|$H/uH_1S0L_AS0ۚH #H5%1H8龚Hm$LEH1AP0k$H|$H/uLOAQ0H|$H/$LWAR0<$H tSH9 HL蠔A$ tCH9HLHL${HL$H[]A\A]A^HLf鯛HLHL$QHL$H|$H/uHwV0OH+_HKH1Q04Ho1U0HOQ0՟H|$H/uLWAR0H|$H/L_AS0˟t HL$H#H51H8雟HmLEH1AP0ȠH|$H/uLOAQ0H|$H/LWAR0陠H_S017H|$H/uL_AS0H|$H/DHGP0 tHL$$LGAP0ġHĉ#H51H8K̡Ho1U0H|$H/uLWAR0H|$H/L_AS0ɣTtHL$HOQ0酣HK#H5d1H8鍣Hm?#LEH1AP0"H|$H/uLOAQ0H|$H/ #LWAR0"tbHL$ HwV0銤H|$H/uLOAQ0H|$H/t!1pH|$H/uL_1AS0VLWAR0IHw#H51H8,DtbHL$ ޤHwV0OH|$H/uLOAQ0H|$H/t!1=H|$H/uL_1AS0#LWAR0H#H51H8vH|$H/tH|$H/#LOAQ0J#LGAP01wLHH[]A\A]A^H|$H/nHwV0HH+XHKH1Q0-H|$H/tH|$H/"$LOAQ0#LGAP0H|$H/tH|$H/x%LWAR0%LOAQ0E1'11F13$H|$H#$w3HI)IH+@!DHI)Iz?HD$I)HH@:EHD$I)H@HD$I)HHA1DHI)I?I)I\AREHI)IH?kD1jR$H|$@V#$TRI)IUbHD$H)HhVHD$I)HHU_HD$H)HHV bHD$I)HHdWB_HD$H)HH V_HD$I)H6WHD$H)HVLLHkI*hIt$I|$(hLLHRLHHBhhLHHhLmlE u7LHLD$LD$@kLmHE(JHE kL9~LHLD$豍LD$Lk#H51I8ϦHD$gH|$H/HwV0ͧH+ݧHKH1Q0鲧Ld$mL#H51I8RmH|$H/cHwV0=H+MHKH1Q0"LXAM ӨLH߾[]A\A]A^cH$#̪H|$x#D$PĪH|$P#鼪H|$H#D$ 鴪LLeH$#$ZH|$ k#|Ho1U0XHOQ0'H|$H/uLWAR0H|$H/UL_AS0t HL$ZH#H51H8BHmoLEH1AP0H|$H/uLOAQ0H|$H/;LWAR0IEmAE t1L9EM}(LIIE>yIEH;E/I];mLL0~oIULLoIt$LV0qI,$u Il$LU0H+usLcH1AT$0qID$L1P0qLp#H591I:qHl$dsH|$H/tH|$H/2uLWAR0tLOAQ0[HL]A\A]A^|L¾L|i1A H@;xI$Hvh1H{HƒH{H鹃HD$@1IH{HHLH<$#髄H{H1附1鯭HSHD$HR0HD$閭11H{HHL2H<$x#Å1҅H<$1[#H{HH1[E1E1B1Ep>AwrAD$C8.D8%$AL$D9FIEZA?GAt{AAyE1g韓L$D$tKH$Y#騕 D$DӁL$DH|$;#뾹AH$#$AANAAAƄ$L$L LMƄ$>fDŽ$ rL$DH# L$DH|$u#A?L$DE1{AAAE1E1鲓IcƄ4kE10E1E11#E1E1E11E1E1E111CM^LAS0#MT$LAR0E11¬1黬IULR0H$R#D$`闚ٙHC(H-#hE1D$,St6tAE1LD$`LD$H|$#=L#uH{(#H#E1*E1IM9NMt MkL1HHL髗HH|$`LHH|$^HLN#L$,E1I|HL$LLLD$D$+<|$+IuIOLD$JHH|$H H#IhHT$IHl$ HHI)LI9M9v}K4 1HIDHH9wILMMLLLt?LD$K7LI<DLL$ 1I@ILMMLLLu1K 61HH9vIDHIDHI9wHt$KLIMLL`tH|$I/LlDHHt$HLLLLT$HIDI)6DMLLHLILELILLD$@KDL|$LL$(LT$8Ht$0CL|$HD$8LLD$@HT$(M<ILMLO 6LT$HL\$01II9vIDHKLLL$MLLLYHt$I<LHHt$LVCHT$LLfEH\$ E1HLsKDIM9wHt$KLIILL2H|$HLBHLLEHt$XdH34%(tjHh[]A\A]A^A_LLLL$ 6HHD$8.HHt~LH5LL$HHLL$(LL$(HHD$HL$H4$MLHu H1#H|$#鴠H#HT$ HměHT$ H4{Hk(L{骙H4$M1LHxnH4$1MLHRH#H#HHlmAWWAVAAUAATUHSHHHNLNH~ LV(HT$L$pHV( L$hdH%(H$x1HT$0H$pHL$1҈D$/H$L$H$L$Ƅ$0$$H$D$p0L$x$L$HDŽ$hHD$Ld$(mD$@I(>L\$hT$H\$XƄ$PIL$HtIN<IH=Od:t%I~ LL)H$IKD:1J4IIɚ;wtI'w)IcwI EA(IEAI?BwIEAA IIEAI?zZM9w]IvHM9wH TL9EAA HrN AI9HL9EAA gIc M9wAIo#M9wIƤ~M9EAA0I]xEcM9EAAH#NJL9EAAAE)McN$H=o#H{ HM5o#H9t" tH9~HHw HHjI]xEcLC(1HH#NJIXLIHLII9HII@HHIIHC#IxMILcJeH$0AH$ALt$(%DŽ$$(-L$I$8E1DŽ$THD$H)$H~Ht$ L)HLNILLL$0H$0HHD$8IL\$xH$0ILHHt$8Ht$ LAI"Ht$8HLHL$IHHT$@LjHL$ILLH$uH$w#$uH$_#D$puH$J#D$pu H|$p8#Ht$HHH$xdH3%(t@HĈ[]A\A]A^A_AWIAVIAUATMUSHD*HZdH%(H$1HBHr HD$XHj(LAAH\$hHD$`A@LILQ Ht$pLY(Hl$x@LD$0LL$8LT$@L\$HDl$PD$ HD$(H9tHH9u8H=Ok#HL$HT$xUHT$HL$HHuA $LI9tLI9u5H= k#HL$HT$3UHT$HL$HHu A $L$HL$LHT$=HT$HL$Ic HzHH+qHH$L9L9~ A $XHt$ IMLHHt$kLL$PLHLMEHLL$蓍MELHHNLT$`LHHt$MEHId IL$HXLIL$H$0Ht$HLMEHIUD$HT$Eut$A <$tL$u]L-*i#A1H ;HI}&I}1HdIu A $HH=jb#xu7LD$HT$LHHLD$LHHa#H2Ht$H]xt7LD$HT$LHHLD$LHH/b#H7L9t1LHLqthEu H}({#Eu Hl#L9t/LHLqt2u H{(F#u H8#D$AE <$nHt$L9tEu H}( #Eu H#Ht"L9tu H{(#u H#1Lb1LbH$dH3%(tͯH[]A\A]A^A_HT$HNpHL$ L\$(HT$HHL\$(LT$ 5cHL$ L\$(QMVhHT$HHL\$(LT$ oHL$ L\$(HT$HL\$ bL\$ 铞L|$ALD$LLHH֚E̚LkHMLC(L\$ H|$0#NJ|ܝŚH|$X|#D$0HT$HLt$0oLt$ƚDT$Et6LHL~oDd$u#HHL[]A\A]A^A_a衬HLLDd$t$H1[L]1A\A]A^A_HOQ0H|$ H/uHoU0H|$H/tz1rH|$ H/uH_S0H|$H/u LgAT$0HmuHEHP014LMHD$HAQ0HD$MD$HD$LAP0HD$HWR01LKHD$HAQ0HD$鐠H|$ H/u LgAT$0H|$H/uHoU0H+yHCHP01OLEHD$HAP0HD$+H|$ H/uH_S0H|$H/-HWR01H|$(#$u Lp#LLL2L¾L_МӪL_AS0-Hmt21H|$H/uLOAQ0H|$H/uLWAR0鷠LEH1AP0饠Hm`LEH1AP0H|$H/uLOAQ0H|$H/,LWAR0՝*L#ߞL_AS0馡Hmt21[H|$H/uLOAQ0H|$H/uLWAR00LEH1AP0HmLEH1AP0-H|$H/uLOAQ0H|$H/ULWAR0 ;H|$HT$LHkuH@uAV(I6lH$#LL\$LT$H5LL$HT$H5[#LLL$@kD$(HD$ \$7LMLd$HHl$8Hl$@LD$LHHHאLD$LHHT$H诜Hl$l$(D$tLD$LHHH蒐LD$LHHT$Hj닺1H\$D$tHL$M t.LL$IA HT$H\$鯣zD$MLDi$IML$H$MH$IL$H$LI\$7Hl$8H|$(LHL$ 󥈔$HT$(L$LD$H$ L$(L$0H$8麡H$#$-H$m#$H$R#鿢H$8?#$離H$$#$鱢H$ #鎢H|$#関L¾W[EmI]xEcM9׃NH#NJL9׃5HvHI9HrN I9IM9׃ H|$8a#D$餟H|$@L#釟H|$h<#D$@jL|$@HLL_hLHwZeLHgZLHRZHԹ#$L9$eI TM9׃ * Ho1U0鰡HOQ0釡H|$H/uLWAR0H|$H/L_AS0ut HL$麠H]#H51H8rEHmLEH1AP0JH|$H/uLOAQ0H|$H/kLWAR0H$ø#$L$L#<L$L#HL$HT$HHH}Ll$(Ll$0驦$<HT$H߁X铦LS(A 1MLIHHbLHrXt-$<HT$H߁SX2Lշ#<H $MIHLHȣHkt$@L՟H|$<鈥HT$HWХHL$HT$ H!ͤA]1HIW鯤H$6#$齥H$#$銥$<HT$H߁dWCH+HKH1Q0鐦H|$H/HwV0uLH$HL\$WL\$L)LbI9t H9_I9M9HE1鷫E1鯫E1駫Ld$`L$fHH$LHD$`0foH$LT$h\$xEuRD$`uIH$Ht$x1H|èu #D$`u Lϵ#LeH}(HU Eܬ1HUD$`uH$#D$`L~#鉰H$HHL$HVD]H}(HL$H$HHL$cD]H}(HL$ѬE1yH|$0#LH$HpU H|$H/tH|$H/LWAR0_LOAQ0H+t1陵LkH1AU0釵LEHAP0w1kHmtI,$uIT$L1R0PHEHP0HT$H4$H4$HT$HIt\Lt$LHM|D$uMLLHHAEuI}(#AEu'L#D$闷HHMTeD$yH|$ H/'Hw1V0H_S0[HL$LOAQ0鎞H|$ H/uHGP0H|$H/tH|$H/ʞHOQ0醞HWR0HmLUH1AR0H|$H/uL_AS0H|$H/tH|$H/cHGP0ڷH_S0H|$(#$HҲ#pfou$1)\$`騹+ICuyAAt@ɝI߼IL9u@u<AʉL$EtI\LV#H5II;腟鎼Eu|/I H|$H/tH|$H/_LWAR0LOAQ0H|$H/uLOAQ0H|$H/t-1?HmuLEH1AP0&L_AS0dLWAR0 H${#$PIL$11LHI+ $5L\$A ApdI?zZM9wUHvHI9IrN M9 HL9MII IMIoM9wHƤ~L9MIINI#NJM9MII21ɺ1Lr_H#~HT$LPI?BvfIwpIMIH|$x8#D$P%L%# I TM9MII A IMIuAjLl$@HL軾H\$@AuIvI~(H|t MfI9HT$PHLH@HLLRL$fo5]L$LA1HDŽ$KIUHLLD$H|$HT$@L,LD$HLH|$LAu,MWM_(K|t$$ $4M_MWHHLLL)I)sMfH\$@H|$p#H$(#$1LqNHLNH$I#D$pL6#kH$##$HH|$ #(H$#$H|$#H|$H/FHwV0 H+0HKH1Q0LLNL$L%INHCDŽ$HH9}2E1H$HMcEHHN$HI$H9}PEL$D$PuH|$x#D$Pu H|$P#LLLH$轰HL$ LHl$PHL$L$ExLA6LLLHHD$MDD$IL$舻A6MLHt$HHtLLH@MLHHJ#HXMLHLLDHD$HADD$AUHLL$M@u H<$#D$`uH$׫#D$`u H|$`ë#D$0t)H\$0H#HD$H|$X#D$0H5P#L$I9w nH5cLHL$DNALIGIGGIDH\$HD$H3wH$ #$HL$LHƄ$$HL$IG(u H=O#I ANLL#H|$(#$ HLD$T˜ 鷙H|$F#H$3#$Ld$PHLLSXMcH<$#ɛHLLI螗HT$0HLHt$ :ƛHLL6AE11LI鑛H$#$YHLIaLV#>H|$xF#D$P6H|$P1#.M@LLH?II#NJI9ЃYI]xEcI9Ѓ@H<OCH$#$dH|$H/HwV0H+HKH1Q0ٜH|$`n#;Hl$0HMMHLHHT$@HLHt$0:9LHHH$#D$`H|$#H$#$A $@HHH?GL#H$#$tH|$#TH$|#$1Ll$`LLLUt MHl$00LHGH|$(+#$u L#DT$LAD UA@DUHH\GpH|$H/BHwV0H+,HKH1Q0H|$0#H|$#t$1ɺL^AfD\$ D\$;Ld$0H$HLTuA1L;F*H|$X+#D$07H$#D$` foqfoIL$L$(LL$Hl$,$$D$,HDŽ$(Ƅ$H$H5D#LSH$HT$D$0u%LD$HHt$XJ|uA D$ ALCtNHT$HILLmHHLH $DL$,D AuIMW(I|uAuH|$IHHHHH9ciHT$LDiM$$Hl$H5B#LIT$HhA}DD$L)IuA EEM@BLoAU0wH_S0H|$ H/uLOAQ0H|$H/tH|$HtH/tE1LWAR0L_AS0H|$H/uHoU0H|$H/uHGP0Hl$H|$H/uLOAQ0H|$H/uL_AS0H|$HH/H_1S0qu H{(Q#u HA#EuH}(/#Eu H#I,$t>E1_蚐IH]M}uMeLAT$0It$LV0/M|$LE1AW0ImuHE(H#t.u H#I,$u MD$LAP0E1H{(n#HC(Imt1MML1AQ0H+uLSHAR0Hl$ I.u MFLAP0OI/MOLAQ01 IT$LR0HE#H5LT$H;Lt$I.uMfLAT$0I.u IvLV0A$t"uL#uIL$LQ0I|$(i#A$1mL95\E#LM\$8HM5LE#L9tDAD$ tDML9HT$^H=#tH-#]u.H H}uLL5I,$Z[]A\A]HuL~ycH5I#H~GH5ʹ#L~#+H5#Lq~H5U#LU~H5#L9~ׄH5ݳ#L~NUHHSQ^HHHw ]P1Z[]Hc6#H5H8|UHSHHHFt&H5H4t@H5aH!tHHH[]lff.HEHHH[]ÐHE@HH[]ÐATIUHSH|HHt#@ @H{0HL~H[]A\fDUSHHH=5#HxH;5=#H=7#]H95B#H=<#BH;5G#H=A#'H;5L#H=F# H;5Q#H=K#H;5V#H=P#H;5[#H<#tH H8H;pufDXuCH~x7HU u^ 1H[]ÐH#*#tff.fH#H)#1!ˉfDHI#d@HY#THT$HT$H=3#H5H?|KAUATUSHHG H5>#HH92H;=3#)H;=.##H;=)#H;=$#H;=#H;=#H9=#~ŅH5ɲ#H߽}H5#H߽}ttH5#H߽}t\H5#H߽}tDAL-W#KtHD}t#IIuH 3#H5CH:{H[]A\A]ýff.1ܽսνǽ빽fUSMEI#NJE1HHAL9gM^H1IL^HBLHI9I#NJL9qHG1IHnLZIIL9H#NJI9zL_E1IH^HjHLH90I#NJL9HoE1ItQH#NJHv8uLL MMI9M9L HE1I9uI91u[]Ð1LH9vINIPNH9sL IL I9sNNIL9tHv8uHHIv$IAL HI9LGIIHfI9 I(\(HHIHDb0L,K\E#HH)I9_ IHIHDJ0H,E HH)H9Q 0G@7[L]A\A]A^A_fI@MXM`MxHD$MpMhL\$IXMHLd$IPI@L|$Lt$Mx Mp Ll$M` Mh H\$Ih IXLL$MXMPHT$HD$H9HIGwIHHHHB0Hd HH)L9HS;\HHHH]xEcHz0HA8H)L9HWx/e9HIo#HH3z0IAxH)H;L$MHu@HIƤ~HHHz0IAxH)H;L$ H͕PMB HI@zZHH*z0IAxH)H;L$ HЄK8HIrN HH)z0IAxH)H;L$ H3"[3/#HIHH%z0IAxH)H;L$d H$ HIvHHH$z0IAxH)H;L$3 HHI THH!z0IAxHH)HH;L$ HSZ/DHH HH Hiʚ;DJ0EHH)HL9 Iaw̫HIHLir0Ap L)HL9IBzՔHIHHi򀖘Dz0Ex H)HL9 I4ׂCHIHLi@BDJ0EH L)HL9{ ICxqZ| HHIHHiDz0Ex H)HH9 HKY8m4HHH Li'Dj0Eh L)HH9HS㥛 HHHHLiDr0EpL)HL9I(\(HHIHH4Dz0H,ExHH)HL9IHIHL Dj0MEhL)HH;L$0A@AxLD$~DLGIH)LoLgIIHoH_L_LWLG HI9Iaw̫HIHDJ0ELiL)I9HBzՔHHHLiDJ0EL)I9I4ׂCHIHLi@BDJ0EML)I9ICxqZ| HHIHLiʠDr0E4$L)H9IKY8m4HIH Li'Db0DeL)H9IS㥛 HHIHHiDJ0D H)fDLWLGHIHff.H9q 0GL@7fL_LWHHLGH9DHD$HoLWLoH_Hl$LwLT$LLl$Lg Lo H\$Ho H_ Lt$L_ LwLWLGH|$HH9L$ HLL$Hu@HHHB0AHƤ~HH)H9L$5HLL$H͕PMB HH*B0AH@zZHH)H9L$IЄK8HILL$H)B0AHrN HH)H9L$I3"[3/#HILL$H%B0AHHH)H9L$HLL$H$ HH$B0AHvHHH)H9L$HLL$HHH!B0AH THH)H9L$<ISZ/DHH ILL$H B0Hiʚ;AH)tff.LgL_H|$LLGLd$L\$LwLoL|$Lg LLD$Ho H_ L_ LW HD$LGH3DHoH_IIL_LWLGH?ff.fLwLoH|$ILgHoH_L_LWLG H ff.@LgLH|$Ld$LwLoLgHoHD$H_L_ LW LG H /LgHoIIH_L_LWLGH]fH_L_IHLWLGHH_LwH|$H\$LLoLt$LgLwHoH_ HD$L_ LW LG H \LLwH|$LoLgHD$HoH_L_LW LG H HoLWH|$LoHl$LLT$LwLgLl$Ho LoH_ L_ HD$LW LGH LOLGHD$LL$LoH_LD$LwLgL_LLl$H\$Lo Ho Lt$H_ Lw Ld$LWLg L\$L_L|$LH9mIo#H1LL$ILD$LL$0HHT$HD$H|$HT$HD$aHWLOHD$HT$H_LwLL$LgL_LHoH\$LWLt$Lo Ld$Lw Lg L\$H_L_L|$L Hl$Ho LT$LWH9UlI]xEcH1I0HֈH|$ LD$H|$A.MMIHLMILILD$H|$fDA.ILILD$L.ILD$H|$.LMILI4LD$H|$ff.A.MILILD$H|$AE.MIHLMILIHLD$H|$A$.IHLMILIMLD$HD$HT$H|$L|$MLD$MMIHD$HLMHT$LT$LD$A.LGLD$H|$A.MMMIHLMILIHH1H|$8dH3<%(&HH[]A\A]A^A_ff.L9Ht$Lt$0MH|$LLLT$HTH|$LL$(LT$MLL$ M9 Hl$L\$IHL$0IHL$(uLd$(I,L9uH1H7I<L$[H1HK|'?HHI<t%LItJLJ9 t ITff.@HH9]_mLW(HWLN(L^I|KL'H9HGHOLFHvHLHH9I9I1IK4K NH9ucHteKtKLH9uN1HtNKtKLH9u7HHt5KtKLH9uHHtdI4I H9tH9HHH1H9HDHL)HI)LLLH1IHLLLxHAA덄AA끸woIЃw&HzHcH>Iwt1H6H1IMt1IH>A 1HIM2\AƒAE AMtЃ1Mff.@HH?H1H)Hɚ;vZH?zZH9Hc H9[Io#L9[I]xEcI9Ѓff.H'w'Hcw1H @1HH?Bw Hø Hv)IvHL9L[H TH9Ѓ HfDHGHW(LDIɚ;w:I'Ic#I HL NTHLWH?zZI9waHvHI9IrN M9wIM9AAH HLJ@HHGff.fHc I9Io#M9I]xEcM9H렐fI?Bvi It1I@H^ff.@1I@H9H TI9H 1I@HHƤ~I9AAHI#NJM9HHHff.HO(HGH|tHGHfYYH1UHSHHx>dH%(HD$h1щ@8uc ukubHHVt0D SAH\$hdH3%( Hx[]HUH9St|@DD)ƒ뫄tщ@AȃAA9LKLUMMHu HC@HK LC(@T$0HUHm(Ht$ H@<$H|$0HT$HD$@LL$HHL$PLD$XLT$Hl$(HD$HD$8KD)1ME1MAD)Mf.SHHdH%(HD$1HG( t)foCHHD$dH3%(uBH[H5G#H9w ~HL$HD$|$HC(uH#HS 5MDATAUSHHdH%(HD$1 W HGf GHD$dH3%(u H[]A\Lff.ATAUHSHHdH%(HD$1 WfHGG 2HD$dH3%(u H[]A\\Lff.AUHIպATUHSHHHLg(HWHL^#HsWHk HC(H[]A\A]UHHSQLHHqWHH9ww ]81Z[]H=#H5[eH?KfDSHHPLH.WHc H9wHC1[HP#H51eH8iK[@HH=#vH;5 # H=#[H;5#H= #@H;5#H=#%H;5#H=# H;5#H=#H;5$#H=#H;5)#H #tH H8H;pu@@$VHWuH#HHf.H9#HHHI#~#tUff.H~#H~#t@H#d@H)#TH|$誰H|$AWAVAUATAUSHHG AAA @LoLw0I}HIH`VEMIUA|0H #<9`{0+<9LMLLD;DA_u @EgA~gHLe@}L9uA$HL[]A\A]A^A_1L9}A%LMMLsHLkI}GIHkUEUM~IUAC|. H5"LM>HIAFA>'L"A;1ۅSI+AA~MAJH C"9IAA<H":HL9uADLD$@4$wILD$4$AE!DLD$@4$H4$LD$D0HEHL9 I6I SIL$IL$ASA>HSIMC<.HAL "A9_MI]AdC|.{L"A:(IARSAHT$MMHt$HJ #HVH|$ HHHXHHL[]A\A]A^A_f.SHH@HtHc HHH9wHC1[:AHt[H"H5YH8?SGHt t.HSH[H@ff.H@FR#CuH{4R#fAUHATIԺUSHHHLo(HMHHR#HC(HMHK LHH>#Hk H[]A\A]ÐH9UHSHHH~HC H9=" HHM5"H9uIU ʈoEH{H{(CHuHHu(>H[]f t!H9~HtH} 또HI#NJS1HLWLG(I9v"HtI1HJL9@tI HHcMH[1fDUSHdH%(HD$1H~HcHH)H;w|HD$dH3%(H[]HiMHL_(HHHHHtHLq1MLII4IHfMH9-"HH{ HM5"H9'MHkHHkLS(I|[L=DDDEE A u 1fUHSHHHAuKAuH IxAH,HIJtLH)KtHMH)HI9toLeIxLHHIM H)NLHH)OLMHIxLHHLeH)H)M NLHOLMHI9uHT$Hl$@LD$Hl$(L9D$HT$Ld$HLL$@L\$Ld$0LL$8L9\$nH$xdH3%(uIIIKIL;\$ tH $L)IIzKM9tLLHdHHeI/H!IM9AHL$IsH#NJIDI9w M+IH|$8MI=H\$N,J<uTI|J|+uBIjJ|+u0IITJ|+uII>Lt$K<tE1AEH$PH9|$H;l$@H$XdH3%(DHh[]A\A]A^A_I#NJI1It'Ht$LL$8HIJHHt$0KIE1qHH9wpHT$HHdIHHH?HLHH!HLHHLO0HHHHHHILH)I9rpI!LI9y`M1IH#NJLD$@MI9HH#NJI9wpHL$LHd HHIH?HHHH!HLHHHJ46HHHHIHHHH)I9rH!LI9qI#NJ1ILT$@M9VmHc;#,Ix@HD$H;h(H|$-;#AILD$PHLD$@H:@LV(LFK|LHCAWAVI6P^Cy AUATIUHSHHHvHHHIH?II)O ONL9MnL} L9-"LHM5u"L9 E :L9 HLl$H}(H_Cy 5HHHIPHH4L qL)ILo[MþIL)MIIuH5"H5n1H;fDAf.H|$@Dm4H99HIc J L9:H|$8HE H9HL9H|$0HEH9HHH|$(EPH9HuAII9h_Ll$E8I9IEL)HD$HwE1E1L%>N#LLI<$H99N#H=3N#vH9>N#H=8N#[H9CN#H==N#@H;HN#H=BN#%H;MN#H=GN# H9RN#H=LN#H9WN#L8N#tI I;I;CufACCA IL;|$A$A+Ll$ Du(I9IULIHdE11HLI<$QH;L#6H=L#6H;L#KH=L#H;L#@H=L#H;L#EH=L#H;L#ZH=L#H9L#OH=L#H;M#LL#t!I I8I;@uff.fA@HA L9AAa*D},1HL$XdH3 %(@Hh[]A\A]A^A_ff.LK#LyK#@LK#@LyK#T@LK#D@LyK#@LK#$@LyK#@LK#@LyK#@LK#@LyK#tE(Ll$ I9wI}FLvIHL%J#Ld$HI9H|$@H9t*qH&Ic N,M9rHE H|$8H9t&=HIc L9HEH|$0H9t HDHDEPH|$(H9t2HAII9E8Ll$I9:AEA:E,1A!AA E1A1Hu)HHuLE"H5-I:^EHuL"H5&.I;6H-"H5+H}JHuH"H5o)H8z6tz_LHAAOLH葁lsHH=G"H5(-H?`GHcHEAVH EAUL,ATUImSHH1HtGIAH9r-AtLLH蜟IHHL苟IHu[L]A\A]A^AH)tff.@tLLHLIHHL;HHu뮐AWHIAVAUIH_Cy 5HATUSHLIIH,ZI)H,I I(II$ IjIHHIHLAEMD$ML$(@PA>K|LAI9IT$L´AfAWIAVAUATUSHxDdH%(HD$h1ALoLw(HJ4IT6H HtLHoLgNL%IMH_Cy 5HHHLNRL)t-I@MuH|$hdH3<%(HugHx[]A\A]A^A_ýILcM~AL-5HI)KdHID6I1ItHAALtV~UHSHQ IUHHuZ[]Hf.AWfAVAAUIATIUHSHfo 6HRL$H$fo6LD$ fo5LL$dH%(H$1HL$XHNH$D$`0D$hL$xH$HDŽ$D$0T$8\$HH9nxI]I}(H| M]ILRI9 HL~LLJt9H9L|$`H)LLLvIT$H\$xMD$HUL9{H9"HLm HM5"L9|E L9[E$HH}(LIT$(H$AE8L|$MAL9YIILNNN9HHLE1LH+AMI#NJLAHHLVMM)L+jM9AAv I#NJMLoHL^MI)L+jM9AAs I#NJMLoHt|LFMI)L+JM9AAv I#NJMLOHtJHL$(AI#NJN LH)J+ L9AIL9IGAJ II9uHL$(H9AEHt$H^L,HN /I9H9"HH} HM5"EH9 H9AH]A DuMM Iɚ;I?zZM9IvHM9HrN I9w(IM9AEIN ff.@HD$`LJ[HH] H$dH3%(Hĸ[]A\A]A^A_ff.@L|$膁IHULU(H]A DuM\Iɚ;I'eIcI HD$`LNLCLMCfDLHXI#NJMMCMDALH9HH9fDL,HPL,H9LHLH9LLHH9ff.@Ic M9}Io#M9H]xEcI9AEIJNN M9Ld$E1J)LHIILHMLA1WADuMpLE11: z AWH'AVAUATUHSHHT$HcL,hHILIHL!L!HL$1H\$,fHH|$IE1HI)AH|$HIHH"LHHHH)HH"HHIHHI)HHH"LAHD$~D$EI, I9# LHIIH)IH"HIHMIL)II"LILHL) I"LH\$ H I9 H\$D$HIABH9MME1Ht$MLLIzLHTHt AHL)MHDI9 ILL)M9wEI1MMM)HMDM9 MMDI)L9PMHLff.HIHH(LHHHH)HH(HHHIIH)MIH(HAH\$~D$AL I9LHIIH)IH(HILHL)HI(IHMHHI)HH(LAH\$EIu I9dL)Wff.fHH H)HH HHIHH I)HH LAH\$~D$AHI9LHII H)LHH HHHII H)IH HAH\$EMI)L9gMLHH|$dIE1II)AH|$IIIH"LILHL).I"IsHHHI)H"IZHIM9@LE1HIIH9AH)MH"HIMIL)I"LsIMIL)I"LIML9NHl$LJLH;l$ZLT$ILT$L9d$*L|$Hd$L%ff.fLHH|$HIH I)HH IHHHH I)H IBM9)H LHIII I)IH IIMI M)I MMMM9NN Hl$LLH9l$PfI9IAff.@HwJnA]؀AEMf@A]H[]A\A]A^A_1H@DžtHuL](Hu3Id LHMdHHE!ff.@I#NJMIM9AMI#NJHUHM|M9tMIɚ;wHI'Ic!I 7LJOO\QL]L;I?zZM9HvHI9IrN AM9w%HI9@DM@ ff.HrHLIv[LH!AMȀAEEt'LELM(@PAMK|u HmAMEHuL9uHU(uAMLHO(J|{$"{$L% IcL>ƺH茖AM@I9H}HݕAMkMLHI)L_OM)EuHuL](L}EAI|EU%L;cA Eu IHEMSIM9taMS!{(HWLBL+LGu1H蟕LHH\_HCHH+HEICH[SMSIM9AMStH*E1IAEEMEME1IAH}(A 1HIMHkHl\AMICHvrH#NJEt^fMII9At MIHH9EuxE1MAAMHufAVIAUMATIUHSHu, u$MM[L]LLA\A]A^MLHHLԣu MMHHL[]A\A]A^PY[]A\A]A^UHSLHdH%(HD$1LD$D$BD$ AtHھH蕓HD$dH3%(uH[]9fAVIAUMATIUHSHu. u&MM[L]LLA\A]A^MLHHLҢt []A\A]A^MMHHL[]A\A]A^CXUfSHfo HWdH%(H$x1HWHD$pD$0HZD$L$(HD$8HHHIfo;HXLIHHl$hHl$HV"HL$PHL$@Ht$`HH)T$@HD$XK|$@HD$ HD$@BUHu?HH$xdH34%(u.HĈ[]H$HHHHcAUIATIUHSHHu=HVHF(H|tILHH7t3HLLH[]A\A]S[u Eu#X[]A\A]A}$tLHHt#ff.AUIATIUHSHHuUHVHF(H|t&LHH藞HLLH[]A\A]A}$tLHHjtπeZtX[]A\A]uDAWAVAUATIUSH(dH%(HD$1D$YHH="HUHH}LhAD$L}Mt$LD$uVLLLLt$HZHT$dH3%(Hu|H([]A\A]A^A_AD$tLLLLt$HSZtLLLLLD$tYLD$tt$HZvAWAVIAUATUHSH8HT$HL$dH%(HD$(1HGHG+1Ҁ-sA>@n@N@s@S@ig@I]E1E1E1fEe.LADPAvIFM|IƄuMM!|Ht$ I|$ H A|$LL$ A9LHEL)MIc L9DLuHHNgmI9~ HI9X I_Cy 5HIHL IMJ4BH)%LRL] L9"LHM5Ց"L9H}(LUAIIGIIM9-E?A0McM1HHHL9O<0HNxMAHAL9 0OHcN4RM1AHHL9O<0HNxMA8HQL9O40HJ pHI At?AM}HBL9LA0HcHJ FI D9uMOH_HT$Ht$PHD$(dH3%(VH8[]A\A]A^A_ff.fM{0Mj@M'A^IFMDKA@A^IF2ff.I^vfH(HE"HH9t HH9Lff.HL)M*IHc M)M9MD$HI9\IHuML9L)HufDDCDPuT@.E^CDXIE1M A^IFMf^I1nMANnt NEnAft AF{A~?H胉ANnN@it@I4DANaOAF@st@SuL LT$L)IMcZ(HD$L)H9E1H6P^Cy HHHH?II)O$OfL)HHIML95"LL] HM5"L9LuAH}(MfH~8N IGIM9uIHEA0McM1AMLN MUIAE1MI)AHpO40HNpHMAIIt$OHv0HNXHMAOA@LIHHIIIJO @HMI)IIIAtuIt@ItHH!HlHHHQHHH!HOHHHQHHH!H2HHHQHI9fHH!HHHYHHHHH#HHIHHHH!LHHHHHKHcHHKHHHSI9uHHuIHt$H$DDM3H#NJI9 MjE1HAIMnM9KMMIAwIG L@ t$AwMn0MxH5~"I8I9w0IMw0H9|H\$,Ht$0HLD$,AE1HAIFIFHLIF0w?1H0IiAG H\$,LH|iHv8uIMIILJI9@M I9HHHHQHI9FHfAWAVAUL-"ATUSHHBL9u"HAHHD[]A\A]A^A_HALHIHAąueHStLHLE1HHEAEt!H=s"HRH51H?|H B"HHMhH]AHUf.SHHH5H@dH%(HD$81HL$(HT$0HT$0Ht$ HٿHT$(Ht$HٿtULL$ LD$IyIp=u-H~"HI)tUI(t9HL$8dH3 %(uZH@[H}"HH|$ H/uHOQ01HD$I@LP0HD$IQHD$LR0LD$HD$USHHH5H8dH%(HD$(1HL$HT$ D$HT$ Ht$HٿHT$Ht$HٿH=%">HHHD$Ht$H}HKLD$HPHvH|$H/t5H|$H/tQt$HCujH\$(dH3%(HuRH8[]HWR0H|$H/tt$HrCtVHOQ01H|$H/uL_1AS00(ff.USHHH5H8dH%(HD$(1HL$HT$ D$"HT$ Ht$HٿCHT$Ht$Hٿ$H="p=HHHD$Ht$H}HKLD$HPHvLH|$H/t9H|$H/t7t$HNBH\$(dH3%(Hu4H8[]HWR0HOQ0H|$H/u L_1AS01f.USHHH5CH8dH%(HD$(1HL$HT$ D$HT$ Ht$HٿHT$Ht$HٿH="0unHT$dH3%(HuVH []A\HWR0H|$H/t+t$HU>tH|$H/Hl$HOQ0Hl$pff.AWHcHAVIAUATIUHSHH(L,IuLLNHHL}LDHLEL&&1IH M!L!fDIHIH"LIMIL)wI"LsILHL)I"LHT$1HL;l$ HHI1IH9H)HH"MHILHL)I"LsHIIH)_H"HHMAL98~D$HT$D$AHI9MILLIHI1II)MIHLHH(LHIIH)H(HsIMIL)I(LHT$ML;l$HHI1IH9H)HyH(MHIMIL)I(LsILHL)I(ILHM9~D$LT$ff.III I)LHH LHIIH M)HHLE1H LAHD$II9HHIHHH I)HH LHII H)H HI9v>Mu9~D$HD$LHH(HsHI9vHtff.L)ff.IRI~L)HD$>ItI(ILHT$sIL;l$v ML)l$ DHLAЅHHl$I>LHL|$`HI~LHHD$MgHHI~LHHI2HI~HLIAHHt$InM~M~ I6IFH;l$EMtoI?LHGILHHD$GILHHGILHIGLL$IoMgMIGM~@H;l$I?LHHI@jGILHHD$VGILHIDGILHI2GMwIHHT$MgIGIWLGILHHD$FILHHD$FILHIFLT$LD$MwIGMWMGH;l$/H([]A\A]A^A_IGIHH5H TDHFH=VHH2HFHL$LЅmLD$MDLAЅIHD$I>H"IHr[MI9HWI"HLHT$r#Hu L9l$L)l$IIHIff.fAVAUATUSHFHH5Y"IH9@H;N"H;I"H;D"H;?"H;:"H;5"H;0"H*ŅH5"HH5"HH5"HtvH5"HйtxAL5"K4HD谹t,IIuH3o"H5lH:輷fAl$41[]A\A]A^ý۽Խ1ɽfAUAATIUHSHHDdH%(HD$1HG(A H=n"H9{ HKA1H#NJI#NJA H9HDHPHH)H0L9HCH1H=ɚ;H='^HcH :HmHkff.fALcE1HH#NJE I#NJL9DAL`ML)HH9(1HsHH=ɚ;fI?zZL9wqIvHL9IrN AL9wIL9AEM] IL[HD$dH3%(1H[]A\A]f.Ic L9Io#L9I]xEcL9L_두AH=?BvhA H=fH=L^QH=AEMZ9fI TL9L_ @H=DMXf.HƤ~H9@@LXfI#NJI9MIM[off.@USHHdH%(HD$1H~ HH9G83@uHkLS(I|HD$dH3%(H[]ùHL_(HIHHtHH5 1MLIJ4IHBH9-k"HH{ HM5k"H9u5HkH=baHK1H7hI|uH H9~\ff.USHHH5H8dH%(HD$(1HL$HT$ D$RHT$ Ht$HٿsHT$Ht$HٿTH="+HHHD$Ht$H}HKLD$HPHv_H|$H/t9H|$H/t7t$H~0zH\$(dH3%(Hu4H8[]HWR0HOQ0H|$H/u L_1AS01f.USHHH5sH8dH%(HD$(1HL$HT$ D$HT$ Ht$Hٿ3HT$Ht$HٿH="`*HHrHD$Ht$H}HKLD$HPHv@gH|$H/t9H|$H/t7t$H>/H\$(dH3%(Hu4H8[]HWR0HOQ0H|$H/u L_1AS01ڰf.USHHH53H8dH%(HD$(1HL$HT$ D$ҰHT$ Ht$HٿHT$Ht$HٿH=u" )HHHD$Ht$H}HKLD$HPHvPmH|$H/t9H|$H/t7t$H-xH\$(dH3%(Hu4H8[]HWR0HOQ0H|$H/u L_1AS01蚯f.USHHH5H8dH%(HD$(1HL$HT$ D$蒯HT$ Ht$HٿHT$Ht$HٿH=5"'HHdHD$Ht$H}HKLD$HPHvH|$H/t9H|$H/t7t$H,H\$(dH3%(Hu4H8[]HWR0HOQ0H|$H/u L_1AS01Zf.USHHxoFoNdH%(HD$h1HF(H2oRD$oZHR(L$@T$8@\$H@t$0Ht$0HT$X $HD$(^1H߅Ɖ1nH\$hdH3%(u Hx[]蠭SHHH5H0dH%(HD$(1HL$HT$ 諭HT$ Ht$HٿHT$Ht$HٿtbH=R"%HHHD$HL$H{HPHqH|$H/tDH|$H/t0HL$(dH3 %(Hu/H0[H|$H/uLWAR01HwV0HWR0虬fSHHH5H0dH%(HD$(1HL$HT$ 蛬HT$ Ht$HٿHT$Ht$HٿtuH=B"$HH4HT$HD$HzHp\1H{1ɉH|$H/tDH|$H/t0HL$(dH3 %(Hu/H0[H|$H/uLWAR01HwV0HOQ0vfDAVAUATUSHHH5H0dH%(HD$(1HL$HT$ D$lHT$ Ht$HٿHT$Ht$HٿnH="#HH2HT$HD$LeLrLh@umBugLLq1L1ɉ;H|$H/t[H|$H/tot$Hy(uIH\$(dH3%(HukH0[]A\A]A^HKLD$LLL.muyHOQ0Hmu LEHAP01HwV0H|$H/uHoU01fAWѺAVIAUIATLUSHHHK1HDLl$ Ld$HLt$L|$PHfLLLIϯM9rLcD$XLnHDO,JH|$HD$(H\$LL$ HD$IIM!HIM!HLL$@H\$8fDH\$(Ld$ff.LH1HHHMH1HH)@MKHHHH"HHIIH)H"HHMIL)_ I"L MNI9EI|ARHHM`HH H)HH HHIHH I)HH LDHIHI9vHtL)IHuff.LHH0H|$I#L$4Ld$H|$ L\$@IJHIL)L)?L),$I HHLHH HIL$fHMHI LpHdMHI LHL)I(ILsII9vMfL) L),$HfIQH(HHsHI9HHI I(ILIIHI4I"HLrEI9v HL)HH"HHH HIiHL),$xH\IL)I*AWHAVAUAATUHSHxT$L1HH|$dH%(H\$h1Ht$8HL$ILd$0H9vDLHVLHc\$LH5AH I"HH޾H|$8H!I!茅Lt$Lt$0HD$(HD$@Lt$ Ht$(H|$@H 'HHHI<%H|$8ILE1ff.fHIHH"LHIIH)H"HLHL)I"LHT$HH;\$HE1IIHIH9AH)MH"HLHIIH)H"HsILHL)I"LHD$lHH;\$H1IHHH9@H)HH"HHIIH)H"HsIMIL)I"LMH9L1IIIH9@H)HH"HIMIL)sI"IsIMIM)I"M`ML9~D$IHD$GM9HHwH'HIE1HI)AMHIHH(LHIIH)K H(HsILHL) I(LHD$ HH;\$H1IIIH9@H)HUH(HLHIIH) H(HsILHL)I(LHD$HH;\$HE1IHHHH9AH)MH(HHHHH)(H(HH3IIH)7H(H7M=H94LE1IIIH9AH)MAH(HIMIL) I(IsIMIM) I(MIIII I)LHH LHIIH M)HHLE1H LAHD$IH9HIIHI H)LHH HHIII I)IH LHD$LtH9kHIIHI H)MIH HIHLH L)HI E1IHALIH9LIIII I)MIH LIHLH L)HHI IAMAHu L9iI)M^H(HHf.HIIH)H(IHsIH9vMtH)L1IIIH9@H)Hff.IH"IHHILHL)HIGI"IL H9 H)LE1IIIH9AH)MIHjI(HLHD$sHHu H;\$w DH)\$HE1IHHHH9AH)MGDH9II)LDH)HD$H)HD$H)\$?I"IM L9 ff.I)[Lt$0H|$(t6HD$(H\$hdH3%(p Hx[]A\A]A^A_ËT$LH|$PLt$0H|$ IH9|$sLL$LD$XE1Ld$`ILL$ LD$IN<L|$fHIHH"HHIIH)tH"HsILHL)`I"ILHL9ML9HIHiI1HI)MbHHHH"IHHHI)H"LsHHHH)H"HIbHuH9lIsL9EHIHHE1HH)AMRHIHH"HHHHH)H"HsHHHH)H"HIRHeH9\IcL9HD$HHI1HI)@MHHHH"IHHHI)'H"LsHIIH)H"HHH9MI^I9fOLT$ OLD$O IL;\$HL$Ht$ 1NJ<K4LHII)HLDL9IL9hHD$HHHE1HH)AMHIHH(HHIIH)6H(HsILHL)I(LHH H9LII)L9DHHHH(IHHHI)IH(IsHHHI)H(ILHL9 ML9hI)`HHHH(IHHHI)H(LsHHHH)H(HIHHuL9f.I)M@I)HIHH(HHHHH)dH(HsHHHH)%H(HIHL9vHtqff.I)Ms`I)Sff.HIH I)HH IHHH I)H IHuL9vMrL9E闻f.IHI H)LHH HHII H)IHH E1HAHIIH9.M%LI~@HIH I)HH IHHH I)^H IL9>H5MIHL),$HIGL)IDAWHIAVAUATIUH-SHxT$<1HHt$0H|$dH<%(H|$h1HcH\H|$PH I!H!HD$(LD$(MN MLL$HO, M9-L|$Lt$`LT$XILt$MLT$E1IJHD$ HL$K41N KLLHII)HLDL9?I L9NHD$HH* IE1HI)AM! HIHH"IHHHI)H"LsHIIH)uH"HHMH9LH! H9vHD$HH IE1HI)AMHIHH"IHIII)H"LsILHL)I"ILHL9LH9HD$HH3 I1I)MIIHIH"IILHM)I"MsHHHI)H"IMHO L9F ML99HD$HHIE1I)AMHHIHH"IHIII)SH"IsILHM)L<I"MMH L9 ML9OLLL$K<OIL9T$ T$ҡff.fHIHH(IHIII)H(LsILHL)I(ILHH9sHf.H)H@H)HIHH(LHHHH)VH(HsHIIH)H(HHMH9LHH)H9ˠff.fHIH I)HH IHHH I)H IL9nHeMTIII I)LHH LHHH H)HIH E1IALIL9LH&ff.III I)LHH LHII H)IH E1HAHMyH9pH7H9:UfIII I)LHH LHIIH M)HHLE1H LAHD$IH9HIIHI H)IH HLHII H)H HHMH9HIIHI H)IH HIMI L)I ILMcH9ZLIIII I)LHH LHIII I)IH LIDMu L9 H)If.III I)LHH IHLHH H)HH E1HAIIfH9]Mff.@I)H"IHH@ILHL)|I"HLHT$H;\$v H|H)\$rH(HHIsHL9vHf.I)HPI5I"HL$H?H)HE1IIIH9AH)MxIhIHH~H)IDLH)8DH)HD$HH)DH)H):H IHII ILJfDI;H0H)\$ H(IHIsIMu L9@I)H(IHHsIMuH9IfDH);I(HLsHH9vHfH) H(IHsIH9vMgfH)VH(IIsIL9vMfI)Hl$H\$0Ld$HDl$Aff.HLmM&I#NJHM(H9LOM9AL IEH#NJHAHPH9@HQIvl@tgI#NJLIMQM9LQIv?t;H#NJH4HH9AH4H#NJH9HLD$LD$f.EtgH[]A\A]uLU(AtHtEEuA(BHtEE1HAEtE1HAA(AHt@A({HHI92E$HH1[]1A\A]LLHHLD$rLD$wLm( 1IEHHHHHIv1ELmL"IuL] L9ILL9hAff.HwZIEM@LTL9UL]IL+]M9rA 6FHAEfIUH3H#NJMM(MII9AMHEI#NJMYIM9MYHvstoH#NJIAHH92IAHvGtCI#NJMIM9ALMH#NJI9L IEH}H9[I]MLdL;e?HMHH)I9+A@ff.1H5"HMM H9HML9ܐf.H1L0IE"HAE^IE@1H@IE1H1HIE( 1HHM6HHuIHH9EMHLLLt'X[]A\A]A^A_YL[L]A\A]A^A_ A$tAtAXL[L]LA\A]A^A_zM}(AW IEIAHvIUH_IAHvxIHvE4ff.fAUH "ATIHHUHUySHpH"dH%(HD$`1HD$D$ H\$ H\$P1LL$(LD$WZYHl$H9~HHD$Ho@oH oP0H|$)D$ )L$0)T$@H9MD$L-Eo"M9|H\$I$H{L9HHHLkHL$ It$HxLLD$!I,$VH+u1HKH=LA0I9CtPt^HSH@t$H|$9HL$XdH3 %(H?Hh[]A\A]H{@k"CuLj"H5In"ULSAHHH=n"蘉HHH=n"HHtLkHL$ It$HxLLD$I,$5DH5m"LTML$ALHH=m"IHHl$H\$H{L9HH=Vm"HHCLkHL$ It$HxLLD$VI,$5醌Lg"IRH5q1I;UI,$1OH-9"IQH5^q1H}1yU+H}H5Yn"H9uvH|$ Hu H|$H9txID$DHl$MD$L-sl"M9I$HmfLMH1AQ0VySH "H5j1H: V{Hl$HAS}ff.fUSHHH5#uH8dH%(HD$(1HL$HT$ D$UHT$ Ht$HٿHT$Ht$HٿČH=ek"HHH|$H/t*t$Hu,H\$(dH3%(HuEH8[]HOQ0HWR0Hmu LEHAP01H|$H/uHoU01}Tff.fAWAVAUIATIUSHH([H~HFT$L4 @ IHML9ILHHHHH|f"IHjM@@ @ŀMH{Hs(HtLL;kHɚ;H'[Hc1H ƒ1>HsHHLH+sHHH@0LH+KII)I9A+IM,LCLK(KtL9k]fJ /HL$Hɚ;zH'HcC1H ƒJ /H{HH M9\$ tL)M<$H([]A\A]A^A_fD@M`L9AILHHIHH e"IHCff.@A-ILSL[(KtL;kLff.1HƒWff.H?B# HH҃+LEA AEDL)y L-L)HxPHɚ;^H'Hc'1H ƒ1 %Hff.@ t H~AIHHXc"IHF;@@@@ŀ @ )NaNHLsMLk(KtHɚ;H'HcH ҃1H LsIHs(1ɺHJ4IIn@MHL)HHHHH]b"IHKHx-Mff.LS(HL$H|$L HLL$I4DL\$IHS(HL$HHt HL$LD$MHIH{(HL$LL$J4HLL$IISff.LM0.LWIfM~ LLʾ0LL$ML\$IMH{Hs(HtHɚ;H'HcE1H ƒ1L?LKILS(1ɺHLL$K4LL$IIH?B H1Hƒff.fH?zZH9IvHL9HrN H9=II9҃ $f1Hƒff.H?zZH9HvHH9HrN H9HH9҃ Wff.Ic L9Ho#H9{IƤ~1L9ƒ[Hc H9Io#L9TIƤ~1L9ƒ1Hƒff.ԂHInfinity@HHpff.H?B HH҃1Hƒff.I?zZL9IvHL9HrN H9II9҃ sff.1Hƒff.H?B^ HH҃1Hƒff.A-H@;mH?zZH9HvHH9!HrN H9II9҃ Eff.HK(HHt$HT$H41HWLD$ILK(LT$H1ɺKt+H|$HHL[(H|$1ɺI4HH|$HHHFH I TI9҃ |Ic L9,Io#L9IƤ~I9҃I TI9҃ LKLS(K|vIFAHIHyHIMdL9IL_H҃Ic L9Ho#H9 IƤ~I9҃H҃{sNaNH\H TH9҃ H TH9҃ 7M4H?B HƄ$-H $~$f$f֔$fofl$DExD$Ƅ$8DpHH1ENA_ A^U fDŽ$ PĀ E1<^ H$D>AGըA A0H4$@AH8IDW.H$8@, @.Lуߍy@%N{ 8 H|$XHL$H1LHHHH HD$ L$H1LIIII HD$H$ fEH$IfDo tMMƄ$0$Hc D$D$H$H9$] I>DE1BDD$A  A+. AE D$`Hc H9 LHLD$`LL$DT$LDT$MAuIQIy(H|D$`%XuLVL$DL$D$D~A0H4$ELFƄ$zL$DL$Ht$D$Ƅ$^H$IK"$IylL$LL1LD$`LDT$?MDT$=ATHLA eH5W5HD$Ht"H :HD$HH H$H|$XH5W4H$Ht$H9IHoHP H$H$H|$XH5W4HD$Ht%H9IHpL@ HD$L$H$諨L%4!H5@WE1I<$E1F7H|$t#Ll$MuLt$IMuu MULAR0H<$tH<$LL\$ILH|$MMH$>L@AgAGL$8NEED$8H$o8LX$L$跧@H$M1MH9t 1I9u HMET<E>HD~\$ Ll$`Ld$ L|$xD\$fD\$`MD)\$`C/~AL HD$HH H$ALܢIHmLX H$L$HD$L6UL -UL $~4$H !UHpL$H$H$4$$x.HIc L9n-f֤$fofl$DE@`kD$Ƅ$;HD1E~ALIAL$ $$zL$_l<%A LD$ML $IM^1ADQAt IIzH{AH$3@$AʀHL$LiHL$ -Iu0Mm@I|DT$HLLHHH)IH|$E1H/fDŽ$;M@uAIA0@uHt$H1Lc1IA@&HwV01H)"AOA\LHHHKg>"IH9g6fLSL[(K|uHSHfH|$`LHH|$SffDMMCtM]MC|IUMHL$OT HMIgfD$`QeeIeLG(IHeHxJL'*Ln="MGLImEIHtIC|taIE1 t/L-G!H5mJE1I}\*A'*L=h!H5 FI?E1.*M{MUC|kMMu1IOT IMjIOTIIMddSH賥HeHߺH[fSH胥H\eHߺH[fAVAUATUSHdH%(HD$1GD$$Lo#HHeH= ?"ˡHHeL`HT$LLeCxeHS0HK@H|Ls HC HH)H+HHsH=LF0I9C8FLKHA@HeMI?LL1L)$IHe (IH4eH+!LHg^"I,$HeImcHdHHM(IHdHH ^"HmIdHuHV0LH]"H+IHkHU0I,$McMc1LLG$ImIcI.0HL$dH3 %(LH[]A\A]A^ff.I,$MbMbLL1#IImI.uWc ]"HmIbLEHAP0Mc^'IHbHL1`#H+IImbI.bfH{@8"CL8"ff.E1G u.H=%!H56BE1H?%I\$LS0H!H5AE1H:%yHCHP0Mt ImaMQk%HAHBbMI?LL1L)"IH)b !&IHBaHN!LH["I,$H&bIm#akaaf.AWAVAUIATIUSHHXLD$ dH%(H$H1D$LJLvK<1HH|$8M9IIHT$Ht$H@ HT$Ht$Lz(Hv(L<$IHL$IJ*mHctH IK4ITwHS@HIIp(Lw(I#NJHk(HI&IIIIv8uI?LIHL!HHJ*mNHcH}(HU E]t$1HD19H$LH=MLLHHL\$$LT$A2+@H$H-HEH|$X"D$0LH$HL\$VL\$cMKLL$0IH $LLLLL$_LT$AML+d$HLcH9JL9%(!LHU HM5!H9+E HKH9Y1HƃܡHtNt$HD1躡H,$MI^11HHKI+q7L4$ArH$H\XLfUSHHH5 H8dH%(HD$(1HL$HT$ D$HT$ Ht$Hٿ%HT$Ht$Hٿ%H=5"fHHKHD$HT$HuLL$LCHHHRH|$H/tTH|$H/t*t$Hku#H\$(dH3%(HuEH8[]HwV0Hmu LEHAP01HOQ0H|$H/uHoU01HAUATIUHSHdH%(HD$1D$/iHKIHEH("H9I|$HEH9I$HHKLHH@0fHUfo-!LH@HpME` IL$LL$H@h0NHmI,$t$Llj*HL$dH3 %(HH[]A\A]fHHHUHLHHHI|$H9I$H="HHHxH@0fHUfo Hx@HpMEP IL$LL$H@X0OHmI,$t$LmiVIH5y"XIL$LLH=M"IHAIH=5"HH0IHpH@0fHUfo Hp@IL$Hp@ LL$MEH@H0|Hmt I,$t)t$Lh6HLUHAR0M\$LAS0Hա!HHmnHH!H4HE8+H\H'Hff.AVAUATMULSHH dH%(HD$1D$H9BHLl$ILMD$u8LMLHHzT$ UHD$dH3%(uH []A\A]A^ E|ff.USHHH5HHdH%(HD$81HL$(HT$0D$LD$ mTHT$0Ht$Hٿ 5HT$(Ht$Hٿo +HT$ Ht$HٿP H=!aHHOHHD$HT$H}LL$Ht$LCHHHRHvsH|$H/tHH|$H/tOH|$H/tWt$HffH\$8dH3%(HHH[]HOQ0H|$H/uLGAP0H|$H/uLOAQ0t$HftpGH|$H/uHWR0H|$H/t1|Hw1V0nH|$H/uHO1Q0UGfAVfIHAUIHXLIATIULSHHpfo {foSdH%(H$h1HD$`$0D$L$HD$()T$0HL$@HD$HKH\$PHt$XHHHT$`HD$hHHD$pHt$0HcILHLLHLLA$vFH$hdH3%(Hp[]A\A]A^ÿH?H9WFH$1HD$hHT$`HD$HH˔Ht$0HILHLL*HLL$E[EEfAWAVAUATUSHHodH%(H$1Ht.H$dH3%(HmH[]A\A]A^A_ffofo HHfoH$HH$H$H$D$ L$(D$8HT$HH$D$PL$XD$hHt$xHDŽ$ Ƅ$$$H$D$`HCLCLD$?foH=c!IXLIIIL$)$HDŽ$KL$L$LIHIDH=!4IH;DD(Lc HH(AMD(HL$H@L!Ld$HAH@lLLaHL$ LLH$MMHL$LHsL蟤CIXLIIGfo-A'L$)$MLLLLeLLLHT$LMLLLLL$A6CA7DKIĉAH7C@Eu: CALtVtGMt AtXtdHk fHIHtfEBAtLuLC!I~(L4!AI($!AL!HIEuHTIHIIH@HHMIILd$A D(L$H1HAH@pLLeHL$ LLHt$PMMHL$LHsL覢Afo%6IGHXLIA')$H$u% uDkAMcIi/1H!H5DH:Iɚ;O=I'>Ic=E1I AInffI)I*HI*YA\^?H,HLMH9=Hl$P1ɺ1HI#LT$ L$LT$I'IcI HH HDHfHL$LKILLHD$0LMHHHDŽ$$D$PMI1HHË!H[HLH$ $IL\$HM#HD$8MDIɚ;H?zZI9wgHvHI9HrN AI9wHI9AEI fDHLJ@Lff.Hc I9 Io#M9H]xEcI9AEIff.@AI?BvwA IdE1IAIMff.fE1IAI)fH TI9AEI fE1IAIfIƤ~M9AEIfH#NJL9MII@$HT$ :A&$9:D$P:t:Ht$D$AD A@DH$(dH3%(|H8[]A\A]A^A_MHH*!HHϚuM1H!HHTP$ $IWff.LL$L% DŽ$K4Ht$H9HT$HLgLT$Ls IHM$ILLLMHLT$A @mx71L1H\$ @AAWIAVIAUIATUHSHH dH%(H$8 1dHVHF(H|=Ao]AoeAom AM,)\$@)l$`)d$PD$d8fo fL$0L$0L$0L$0Ƅ$0$$L$(Ƅ$0$$L$Ƅ$0$$L$D$p0L$x$L$H9YLd$pHLk9M}D$hIL|$ MH\$@HD$Ht$H|$ŘuMAM5x5AWI׹fAVIAUATUSHHfo UfoH$fo-dH%(H$1HT$HH$H)H5n!D$P0HHLD$XL$hHD$xHDŽ$ D$ T$(\$8#jH5fo%HXLII+vHIvI)$H$HDŽ$KH$L$Hm5H$Hw7t,A@H$dH3%(u/H[]A\A]A^A_IV(t LL蝑A@ff.@AWfIAVAUATULSHH8 foHT$H$ H$HL$ H$ dH%(H$( 1H$ D$`0H$LƄ$0$$H$L$hD$xD$00L$8D$HHL$XH<$5L$L$H_Cy 5L$LN$HOt"HLN BM)III IcALkINH[IG( 5L8LHL$EHAL$LIGIG|L\$MLLL$IIAIH\$0L$L$LYLXLT$DŽ$M IH|$LL$JH|$)H|$LwLH?LHH$ IHHH?HHH$(HLRMI?MIL$0IMHMI?MIL$8IXILH?LHH$@IHHHHH$HH;A f.ALPMcAxLH?LHJ IENff.L4$Ht$HHL(HT$ILLHILLHL$M@33D$` 33D$0L3oH$( dH3%(SH8 []A\A]A^A_ff.AHl$Ht$M)L$LL$VLVHL$DŽ$H9HH|$HuMvIHD$H\$0AL$LL$`ALD$N LL$ ff.fMLLAHKLH$HH$A7H$H9pH4$ILHHHLH]ILHH{!HuILHLLaAIL9t$VH)H|$ H4$HHT$(cHt$ ILHT$(HHT$hHWHLHILHHi{!HILHLLAaIL;t$MMk Mk DAuE1mAbAWALALH51JtIL4$H5z!H\$0L赐MMMLHz!H߉D$3$/D$HT$8y HHT$8LD$ LL$LT$@II+ M\HqI9 1HILHT$8H0H)L$HD$H LL)H$IKD"1JI/AWIAVIAUATIUSHH8 dH%(H$( 1!HNHV(H|0OH5y!Lz%I~I~HHHHuHI;G2AoAogAoo Eo,)\$0)l$P)d$@D$TE%2fo5fH$ H$ H$ H$ Ƅ$0$$H$Ƅ$0$$H$Ƅ$0$$H$D$`0T$ht$xH$I9s2I?D$XHl$0HH|$L$L$LLt$(HMLD$L$LL$HL$ LT$MHHLuLT$0H$Lfo=WL[L[L+\$0$L$8HDŽ$uIH|$MHHHT$0LH|$MHLHgH{Hs(H|S$ $Ht$H|$?E(HT$@LHHt$0D|$XiLHH[$|0d0$00$00D$`0_H$( dH3%(>H8 []A\A]A^A_H|-rHI;G0Hl$0A, LHD$Tc/fofL$ L$ L$ L$ Ƅ$0$$L$Ƅ$0$$L$Ƅ$0$$L$D$`0L$hD$xL$I9/I7D$XHHt$9 tYA $HD$HL$ Ht$(Kv111H LHwwHt$H|$uEG(HT$@LHHt$0DD$XtgLHH6$?.$..$q.[.D$`--@A31Hu-Q-f.AWfMAVIHLAUIATULSHHxfo dH%(H$h1IHD$`$0LD$L$HD$(蘃T.I~I9}Hc HXLIIM}ELl$0L|$LHHT$8LHHL$@LHt$PLH|$0HDD$\HD$HKD$XyMLLHHLLHHLHH$d-m-DL$LAD MA@DMH$hdH3%(uHx[]A\A]A^A_}ff.fAWIfAVMAUATUHSHHIXIxforEP,L$ H$0L $LZLZMIISdH%(H$81H$0D$`0L$hD$xH$D$00L$8D$HHL$XH$H$D$H$HDŽ$L$DŽ$ELl$`LLLl$聁,H$HHsI$,DŽ$t$ t$Hf,H$LL(b,H-9IHLlH$ItqLLLIHHHLoMt$HT$LLIHԚHHLFAu IOI(H|uD$Au D$H$D A D$ AD$`+u+D$0+P+HLLH$8dH3%(HH[]A\A]A^A_HD$`IMHH$HƿHD$IHp!L$A$7+HsH5I$+DL$ DŽ$DL$H*H$Ht$LtL*t$LHNgmD$`*V*D$0*1*H$LLfAWIAVIAUIATIUSHhLD$dH%(HD$X1T$A؃D$Lv`T$W4INI~(H|gT$VI_MG(D$I|cH5|n!LD$ lhEAoFH|$ AoNIV(AHt$I_D$(API_L$8HT$HHDL$ )IL9+L\$(A7HL\$0II?D8I|$'jHH9 LL$L$MLLLHD$XdH3%(0Hh[]A\A]A^A_1MNMV(K|AD\$D\$B@I_IO(H|t$1ɺLm^IT$I+$HzHT$9iHL$HH9 t$L(HT$LL MD$,LLLLZAEuH5l!L肂AEW)HT$LL@uIWMw(I|t$11LvD$D$LD$LLLL}Ņ7AA1ɉЉރD$@uILT$@t$E]t$T$)рtLT$jT$1|$L$L\A/IVH\$ LLILHRDT$ AU(HLuM$HIL9HL$HH5j!Lz8A}DD$HImA EEHNgmA'I,$Ld$HA $@HT$LmlLkHt$L݁MD$IOMO(I|O'1't$LkiD$H5j!L'E7AEkADEy&M4$HL$ALH5i!IVM)AM}.@Yhf.AUIATIUHSH8dH%(HD$(1D$ HD$#4H'1Ht$ HLHe~1Ht$HLKKH;-n!H=!0IHH'HT$Ht$ HKI|$HD$HHHLD$ {H|$ H/H|$H/uHwV0t$ HN5HL$(dH3 %(LH8[]A\A]1Ht$HHDH|$ H/|&H|$H/uHoU0Ld$HILL$ HH|$H/DHWR08I,$p&MD$LE1AP0NHOQ0H|$ H/&Ld$)Ld$ PUH 4!SHHHHHPH-Xm!dH%(HD$@1HD$(D$ Hl$(HD$P1LL$8LD$@kZY>HT$0Ht$HٿJHT$(Ht$Hٿ+HT$ H9H=!i.HH%HT$Ht$HKHxLT$HHMuuLD$_H|$H/H|$H/t$H53ulH\$8dH3%(HHH[]Ht$HٿqT$IILL$L0H|$H/rHWR0fHmu LEHAP01{HwV0_HOQ0DH|$H/uLW1AR0IeDAWAVAUATUHSHHxH~HT$dH%(HD$h1D$, H;=k!*H)f.;f(ȸfT bfV f.Df.D$DfTf.>H/!IHL$1H!I,$IeIL$LQ0M$MuI} 1!IHU$HI,$I$H#HpHT$HHt$LImI`MELAP0M#A0L-j!IHH$!HH#IHH $!HC(H#fLk L-Yj!IH[HCH#E!HHv#IHHQ#!HE(HF#Ef11Lm Lt$,fo%HXLIELl$0IIHEH|$@H)d$0LL$PLT$XHD$HKdLLHFLLIwHDHHMLHt$,H|$/!M\$HMLLLL\$lLLH|$Et$,H|$/!AL$L) L$It$ AL$Ht$hdH34%(LHx[]A\A]A^A_f.H{(v!rHb!EiH}(L!E[H7!Ma跱D$H!H!HH 1H!HmIu HMHQ0M MuI} 1|!IH H踰I,$I I HT$MGLHLD$gImIu I]LS0MS A0H-`g!IHH [!HH HHH 5!HC(Ho fL-g!I{HHCHk Hf !HH! IHH!HE(HEfE11Lm AfDo HXLIAHEI!Ll$,DEI Lt$0H|$@HD)L$0LL$PLT$XHD$HK LLHHt$LLHHHMLH6t$,H|$(,9M\$HMLLLL\$LLH5e!KHf.-f(AfT5#fV5kf.AEDf.Dd$EzAfTXf.!HB&IHvI|$D`_H&IHKI|$1_5HI%Hd!H5PE1H;{@fAUH !IHATHHGUSHhHc!dH%(HD$X1LL$LD$HD$H\$Hl$H91|(HHD$HH\$H-H{L%b!L99L葩)H{HuG|HHLHHL$XdH3 %(HHh[]A\A]fHbIHDLHLLHɨH;=c!Hk)HHLHRff.fH}H5!H9臨Hb!H51H8fD$ M9uL9ku HL#IH5HsHxHT$ kt$ H(LH53b!HSH a!H5$1HRH9>1lH5a!HHH6.HHtH^H+ItjMz1*LD$ "HHiHt$ H4H{HL$ H1t$ H'ILCHAP0ff.UHSHH%HHHH=!HH!H9ttHtt1H1H H+Hu1HSH5iHJ0H9uL{@tt(LCHA@HH[]H{@ϻ!{H{!H1Hff.fAWAVIAUATUSHHdH%(HD$x1$HgI~L%!IL9H_!II9tkHE~MfH{D {ALoH+TI.=w\H Hc,H>f1@SHt$xdH34%(*HĈ[]A\A]A^A_ff.fHcff.fAAAAͅLI~LLLIMH^!I92IHSHE~E zMfHALLT$1QnLT$I*I.t>=L-uMctM>ADAA1MFLfMH0M9kA~@D$IFL@D$xLӐIڸA M41AtLB$t1$uwsH]!HD$I~@ȸ!A~D$cD$L!D$VH5u]!H9u.}9AM,LLH=׻!BILuI~H5N]!H9 H5!La+H5LtIH LHH=[!I,$IMC8H5LD$<IHLHH=!I,$IMzH{@IHOH=ͺ!xHHt$@HD$H/LD$I|$ID$L\$I|$D$<H|$ HIHInLhHdD$HE^Io@LL]AwIG0@ t$IG AwuNHT$H薗AŅH5H|AŅH|$H5HD$H|$H5׳AHD$H=L!H5H?E1'PHuH=K!H5E1H?HKHQ0LK!H5êE1I8H|$H5:UHD$ULhK!H5I;联*L MK!H5E1I9cp9@ATUSHG HH uP1L%!I<$t[It$H`Ht HuA l$I &HÙHJ!H5H:“[]A\H K!H55H9蠓ff.BUSQmHNH; b!u0LGLNEE9AÃA8KH8J!HZ[] tFHHuHU9@ƃ@@8uĀ蚒HKJ!HBJ!UHSHdH%(HD$1HH'HØH߾ HHH蜔H+Hu HCHP0HL$dH3 %(HuH[]:f.UHSQHt3HH3HiH讒tH CMHCZ[]@ff.fSH!HH9FtHƒt[HNҘS(1[ff.@SH!HH9FtHGƒt[HNS,1[ff.@AWIIAVAUE1ATIUHSHHIrLt$XAH1L|$PI~ I:L|$~D$L)flIzA)HHHHtHIx C49B4?MtLH1LLHHQ`2MN(IRE1IEE@A@@TI9KI LIRI)IrHH)HL$~L$LD$IRL$A) EHtyHHxpK HHpD9HD:tV|L@I@|tBtHxH@tt.DDHpDDHt<1@<2HHuMuFA~zuIRMM|M9HMjMt MCDH[]A\A]A^A_Ht!I~ D<IIv HL0A9t AytIIIRLH`IHIPB0I M)AH)HPMJfoIZfAMaA)MbHCmBl #fLG(IAt IyIyHHHHHwIy HHHH@@ff.fHHHH%!HG HH+GHȊHGHH+GH騊u)HWHG(H|tHOHOHH;N@@1ff.@UH 4!SHHHHޭHH-D!dH%(HD$1IH,$܋toH$H9tjHxH5!H9u3HpH{RuYHD!HHL$dH3 %(uKH[]wHD!H5H8 1 H$HuHC!HÌHWHG(H|tHOHOHH9N@@1ff.UH $!SHHHHHH-C!dH%(HD$1IH,$輊toH$H9tjHxH5!H9u3HpH{RtYHC!HHL$dH3 %(uKH[]WٕH`C!H5yH81H$HuH>C!H裋HWHHz @uHH8H<>ff.UHSQHq-HHt;Hx(HEHu(HU  ш oECHuHsHZ[] ƒuCLWL_(K|tfHGHGH=HH;FHHMÄHOLG(I|t+LOLOHIL;NH5ƩHMHHèH HHDHbfUH t!HHSHH~HHHA!dH%(HD$1IH$|tSH$H9tH}HpHjHL$dH3 %(u@H[]H$Hu1 דHA!H5.H8螉1uDuuHFH9G u1u H5@!HAWIAVIAxAUE1ATL%!US1Hf[H|$L<$EM H1IcL1LVD9HcA)IHHt!!t驺tEuAL9<$tIfA]IG+D$H[]A\A]A^A_f.ATUSHHw,dH%(H$1H$HxIs(LxR{8HcS4Hz9!HK HsHDKPP1ATLCUWH= H H$dH3 %(u H[]A\蛇ff.UHHSHAPHH HF!HZ[]Ð6@t@8tu@ :9L¾b:fGt H>!HH>!Hff.Gt H=!HHc>!Hff.1Gu HG(HG HH`Gt H>!HH=!Hff.SH=!?HHt(H@@H{HcHC0HC 4H[f.SH=D!HHt(H@@H{H cHC0HC 4H[f.f.HH@HH@HH@H9vCSH_HHHHHHHH6HHHH9([1DHQHH9HHHHHHGHHH9ZHBf.G t H;!HHc[L]LLA\A]A^S uLHL>u9t)HKH9M@DkDGLABA[]A\A]A^ JyATIUSHdH%(HD$1D$DHiH=D!HHHNIt$HxHL$HU艞t$HHT$dH3%(Hu H[]A\|@ATIUSHdH%(HD$1D$HH=!HLHHIt$HxHL$HU艞t$HMHT$dH3%(Hu H[]A\|@AVAUIATIUHSHHpdH%(HD$h1HBHH|$`HD$`H$H)H|$(HL$HD$HD$HD$ HsLC(HT$0HALHD$@I Ht$8LLD$XHD$HLL$PiD$Lu HMHLHD$LGD$L%A EHD$hdH3%(ujHp[]A\A]A^LHHuA$t4eLHHE uELSIL+LULLH9wff.AVIAUIATMUHSH:u8tD AA D A $@UH t!HHSHHNH(H.!dH%(HD$1LD$D$ H\$AuHD$H9toHxH5t!H9H=Č!oHHtVHt$HxHL$ HVHut$ H|$nu-HL$dH3 %(HuUH([][HD$Hu1H+uHKH1Q0sqH-!H51H:vuff.fAVAUATIH=!UHSHdH%(HD$1D$HuLhLt$HIt$LL6t$HLHuLLt$HfHL$dH3 %(Hu H[]A\A]A^)ufSHHuQH~HF(H|tLFLFHHL[H闥HHL$'HL$ H[ uHHߺ1[u'DUH T!HHSHHޔH(H+!dH%(HD$1LD$D$ H\$rHD$H9toHxH5!H9H=T!HHtVHt$HxHL$ HVHut$ H|$u-HL$dH3 %(HuUH([]HD$Hu1H+uHKH1Q0qqH+!H561H:s}sff.fUSHHH5ӒH8dH%(HD$(1HL$HT$ D$rsHT$ Ht$Hٿ蓪HT$Ht$HٿtH=!HHQHD$Ht$H}HKLD$HPHvH|$H/t9H|$H/t7t$HH\$(dH3%(Hu4H8[]HWR0HOQ0H|$H/u L_1AS01:rf.ATUHHH5SH0dH%(HD$(1HL$HT$ D$0rHT$ Ht$HQHT$Ht$H2H=Ӈ!~HH>HD$HL$HT$H{D`HqA}2t SD SH|$H/t;H|$H/t9t$HJ HL$(dH3 %(Hu6H0[]A\HwV0LGAP01H|$H/uHo1U0p@UHHSHH(dH%(HD$1Ht$.Hl$HsH}HmtH%pHL$dH3 %(uH([]HUHD$HR0HD$SpUHHHSH(dH%(HD$1Ht$D$ 薧tlH=;!HHHD$H{HL$ HUHpH|$H/t2t$ HٌHL$dH3 %(HuH([]1HWR0o@UHHHSH(dH%(HD$1Ht$D$ ֦tyH={!&HHnHD$HT$ H{Hp30tsH|$H/t.t$ HKHL$dH3 %(HuH([]HWR01nHHHdH%(HD$1H%tH$H|$dH3<%(u H1nff.@UHHHSH(dH%(HD$1Ht$D$ 趥tyH=[!HHHD$HT$ H{Hp/tcH|$H/t.t$ HaHL$dH3 %(HuH([]HWR01mSHHHH dH%(HD$1Ht$-H|$HH|$H/HL$dH3 %(uH [@mH(HHdH%(HD$1Ht$蓤t5H|$GH$!HH/tHt$dH34%(uH(1HWHD$R0HD$lff.H(HHdH%(HD$1Ht$t>H|$Gu&H#!HH/t&Ht$dH34%(u)H(HW#!H1HWHD$R0HD$%lDH(HHdH%(HD$1Ht$st5H|$GHi#!HH/tHt$dH34%(uH(1HWHD$R0HD$kff.H(HHdH%(HD$1Ht$tQH|$G u&H"!HH/t"Ht$dH34%(u)H(H7"!HHWHD$R0HD$1kDH(HHdH%(HD$1Ht$St5H|$GHI"!HH/tHt$dH34%(uH(1HWHD$R0HD$~jff.H(HHdH%(HD$1Ht$át5H|$GH9!!HH/tHt$dH34%(uH(1HWHD$R0HD$iff.SHHHH dH%(HD$1Ht$/t`LD$HsIxu'H!!HI(t#HL$dH3 %(u-H [Hw !HIPHD$LR0HD$1BifSHHHH dH%(HD$1Ht$菠tJLD$HsIxt'H!HI(t'HL$dH3 %(u-H [HW !H1IPHD$LR0HD$hfUSHHH5H8dH%(HD$(1HL$HT$ D$hHT$ Ht$HٿßHT$Ht$Hٿ褟H=E~!HHHD$Ht$H}HKLD$HPHvH|$H/t9H|$H/t7t$HKH\$(dH3%(Hu4H8[]HWR0HOQ0H|$H/u L_1AS01jgf.USHHH5ÆH8dH%(HD$(1HL$HT$ D$bgHT$ Ht$Hٿ胞HT$Ht$HٿdH=}!HHHD$Ht$H}HKLD$HPHvH|$H/t9H|$H/t7t$HH\$(dH3%(Hu4H8[]HWR0HOQ0H|$H/u L_1AS01*ff.USHHH5H8dH%(HD$(1HL$HT$ D$"fHT$ Ht$HٿCHT$Ht$Hٿ$H={!pHHHD$Ht$H}HKLD$HPHvH|$H/t9H|$H/t7t$HNH\$(dH3%(Hu4H8[]HWR0HOQ0H|$H/u L_1AS01df.UHHHSH(dH%(HD$1Ht$D$ &tlH=z!vHHHD$H{HL$ HUHp识H|$H/t2t$ HhaHL$dH3 %(HuH([]1HWR0$d@UHHHSH(dH%(HD$1Ht$D$ ftlH= z!HHHD$H{HL$ HUHp?H|$H/t2t$ H׃HL$dH3 %(HuH([]1HWR0dc@UHHHSH(dH%(HD$1Ht$D$ 覚tlH=Ky!HHlHD$H{HL$ HUHpH|$H/t2t$ HMHL$dH3 %(HuH([]1HWR0b@UHHHSH(dH%(HD$1Ht$D$ tlH=x!6HHHD$H{HL$ HUHpσH|$H/t2t$ H(ÂHL$dH3 %(HuH([]1HWR0a@AWHHAVAUATUHSH8dH%(HD$(1Ht$ D$H=w!jHHLd$ LpLELl$AD$M|$BuRLLLL脃H|$ H/tMt$H=HL$(dH3 %(Hu/H8[]A\A]A^A_LLLL蒂1HWR0`ff.UH T!HHSHH H8H!dH%(HD$(1LL$LD$ D$H\$^HL$H9HD$HHHt$H辗HL$HT$ Ht$蝗H=>v!HH\HT$Ht$LD$H|$HJHVHwHxH|$H/H|$H/uLGAP0t$H|$uHT$(dH3%(HuHH8[]H+u LKHAQ01HyH56w!H9 餀H|$H/{1@_UH $!HHSHH}HHHH!dH%(HD$81LL$LD$0H\$t]HL$H9HD$HHHt$(H6HL$HT$0Ht$ LL$(LD$ IyIpgHw!HI)I(uIHHD$LQ0HD$HL$8dH3 %(u$HH[]HyH5u!H9L1^fDUH Ď!HHSHH=~H8H!dH%(HD$(1LL$LD$ D$H\$,\HL$H9HD$HHHt$HHL$HT$ Ht$͔H=ns!HHHT$HL$HxjHqHT$t s @sH|$H/?H|$H/tCt$H|$HT$(dH3%(Hu=H8[]H|$H/01LOAQ0HyH5Wt!H9~t\@UH !HHSHH|H8Hx!dH%(HD$(1LL$LD$ D$H\$ZHL$H9!HD$H~HHt$H^~HL$HT$ Ht$=~H=q!HHk~HT$Ht$LD$H|$HJHVHwHxH|$H/~H|$H/tIt$H|$\m~HT$(dH3%(Hu*H8[]HyH5r!H9&}LGAP0[fUH !HHSHH={H8H!dH%(HD$(1LL$LD$ D$H\$,YHL$H9HD$HHHt$HHL$HT$ Ht$͑H=np!HH}HT$Ht$LD$H|$HJHVHwHxH|$H/^}H|$H/uLGAP0t$H|$uHT$(dH3%(HuHH8[]H+u LKHAQ01HyH5fq!H9 ,}H|$H/|1pYUH T!HHSHHyH8Hx!dH%(HD$(1LL$LD$ D$H\$WHL$H9!HD$HHHt$H^HL$HT$ Ht$=H=n!HH|HT$Ht$LD$H|$HJHVHwHxdH|$H/G|H|$H/uLGAP0t$H|$TuHT$(dH3%(HuHH8[]H+u LKHAQ01HyH5o!H9 |H|$H/{1WUH !HHSHHxH8H!dH%(HD$(1LL$LD$ D$H\$ VHL$H9HD$HHHt$HΎHL$HT$ Ht$譎H=Nm!HHt{HT$Ht$LD$H|$HJHVHwHxH|$H/0{H|$H/uLGAP0t$H|$uHT$(dH3%(HuHH8[]H+u LKHAQ01HyH5Fn!H9 zH|$H/z1PVUH !HHSHHvH8HX !dH%(HD$(1LL$LD$ D$H\$|THL$H9HD$HHHt$H>HL$HT$ Ht$H=k!iHH]zHT$Ht$LD$H|$HJHVHwHxH|$H/zH|$H/tZt$H|$|$HAd1A I1HLIHIAA)AHȃIHL4ML)IHIwZAAt#HЃIHLML)IHIw'HȃIHLL\$ HEADT$J|csIvHL9rIrN D$L9rHEADL$ff.@UH |!HHSHHkH8H!dH%(HD$(1LL$LD$ D$H\$IHL$H9aHD$HHHt$H螂HL$HT$ Ht$}H=a!HHrHT$Ht$LD$H|$HJHVHwHxH|$H/NrH|$H/t,t$H|$u$HT$(dH3%(HuRH8[]LGAP0H+u LKHAQ01HyH5b!H9 rH|$H/q1Jff.AWAVAUATUHSH(HL$I ЃH~II]HHNI9M H5!H} I9t$IMt$H9qMM(MT$(L5I~LL$LT$IIUL\$L<HD$HI4H H9Hɚ;wBH'RHcH EAnH(HL¾[]A\A]A^A_7I?zZL9%Ic L9rIo#L9qHƤ~H9EAAEi1AIIL5|H\$"ff.@KHI9uH|mH?BhmA HHEAMIHEAH TH9EAA ff.fUH u!HHSHHdH8Hh dH%(HD$(1LL$LD$ D$H\$BHL$H9HD$HHHt$HN{HL$HT$ Ht$-{H=Y!yHHmHT$Ht$LD$H|$HJHVHwHxTH|$H/lH|$H/t,t$H|$Lu$HT$(dH3%(HuRH8[]LGAP0H+u LKHAQ01HyH5Z!H9 lH|$H/?l1Bff.AWAVAUATUHSH(HL$L$`I ЃJH~H<MeM/HNI9MH5- H} H9sHMsH9lLC(M]( L5[vLD$MUN<LL$KH95 Le HuHM5 L99gHlHt$H([]A\A]A^A_TLIMLA^aI?zZL9Ic L9fHo#H9fHƤ~H9EAAvML1E1 HIHt:H1HIH1LHIIH1I9tILE(IO8H LMxHdH|HHƠK4,HHEAHvHH9vTIrN AL9yII9EAA ]H'HEA>I TI9EAA "ff.UH $l!HHSHH[H8H dH%(HD$(1LL$LD$ D$H\$ 9eHL$H9葶HD$HeHHt$HqeHL$HT$ Ht$qteH=NP!HH7eHT$Ht$LD$H|$HJHVHwHx$H|$H/dH|$H/uLGAP0t$H|$ķu3HT$(dH3%(Hu:H8[]HyH5[Q!H9"dHmdLMH1AQ0^9ff.AVAUATIUSHRHnIHBHH9FIHMFH HHHHH9 HHM5 HH9dLmIH9}zI9mME(IWH(H dH%(HD$1LD$D$ H\$15HD$H9toHxH5dN!H9H=L!_HHtVHt$HxHL$ HVHu t$ H|$^u-HL$dH3 %(HuUH([]KHD$Hu1H+uHKH1Q0t3qH} H5J1H:65ff.fAVMAUIATIUHSHHdH%(HD$1D$H{HHt$4HD$IEH9HH9EHyHLHL6tLL跀HLH 0HD$dH3%(ujH[]A\A]A^HLLH LLpMLHHLu&LLLHL4f.UH $f!HHSHHTH8H dH%(HD$(1LL$LD$ D$H\$2HL$H91HD$HHHt$HnkHL$HT$ Ht$MkH=I!虬HHc`HT$Ht$LD$H|$HJHVHwHxH|$H/`H|$H/uLGAP0t$H|$duHT$(dH3%(HuHH8[]H+u LKHAQ01HyH5J!H9 _H|$H/_12USHHH5SRH8dH%(HD$(1HL$HT$ D$2HT$ Ht$HٿjHT$Ht$HٿiH=H!@HH_HD$Ht$H}HKLD$HPHv`H|$H/t9H|$H/t7t$H_H\$(dH3%(Hu4H8[]HWR0HOQ0H|$H/u L_1AS011f.AUH a!ATUHHHSHQH8H dH%(HD$(1LL$LD$ D$H\$/%HL$H9]HD$HHHt$HhHL$HT$ Ht$yh H=G!ũHHH^HL$HT$HhLiLbBALL1H1ɉ>yH|$H//^H|$H/uLOAQ0t$H|$nuHH\$(dH3%(uxH8[]A\A]H+u LSHAR01HyH5G!H9]Ht$LD$LHHNL\6H|$H/7]1u/f.AUMATIUHSHAQu2u-HH1LƉ1/xZ[]A\A]MHHLdtAMҐUH ^!HHSHHOH8HX dH%(HD$(1LL$LD$ D$H\$|-HL$H9HD$HHHt$H>fHL$HT$ Ht$fH=D!iHHe\HT$Ht$LD$H|$HJHVHwHxH|$H/o\H|$H/uLGAP0t$H|$4uHT$(dH3%(HuHH8[]H+u LKHAQ01HyH5E!H9 [H|$H/[1-UH D^!HHSHHMH8H dH%(HD$(1LL$ LD$H\$ +H\HL$ H9yHD$ H'\HHt$Hd \HL$ HT$Ht$d[H=6C!HH[HT$HL$HrHy1H}1ɉwuH|$H/j[H|$H/t3HT$(dH3%(Hu*H8[]HyH5XD!H97[LGAP0k,ff.UH ]!HHSHHLH8Hh dH%(HD$(1LL$ LD$H\$ *p[HL$ H9HD$ HO[HHt$HVc2[HL$ HT$Ht$5c[H=A!聤HHZHT$HL$HxHRHq*}H|$H/ZH|$H/uLGAP0HT$(dH3%(Hu H8[]HyH5C!H9BLZ +AVAUIATIUHSD6HAHtLLHAulHS(Hs1H|tcH9ZHHtwHk 1HHuHA|$(Il$tHI+,$H+kHH9HOHw%Hk[]A\A]A^DH1[]A\A]A^s蝧u+ZHnff.UHHHSH(dH%(HD$1Ht$D$ vatlH=@!ƢHHYHD$H{HL$ HUHpH|$H/t2t$ H踧YHL$dH3 %(HuH([]1HWR0t)@UH \!HHSHHIH(Hx dH%(HD$1LD$D$ H\$'HD$H9toHxH5@!H9H=$?!ϡHHtVHt$HxHL$ HVHut$ H|$Φu-HL$dH3 %(HuUH([]軤HD$Hu1H+uHKH1Q0%qH H5=1H:t(M(ff.fH(HHdH%(HD$1Ht$_taH|$GuHW0HG@H|t&H} HH/t"Ht$dH34%(u)H(H HHOHD$Q0HD$1'DATIUHSH}HXHHHL1H2:![]A\ATIUHSHW}HWHHHLM1H9![]A\f.ATH sY!UHHHSHwFH`H dH%(HD$X1LL$LD$D$ H\$H\$%%HD$H9誢HD$HLd$ Hp LH|$H9u]H=H8dH%(HD$(1HL$HT$ D$HT$ Ht$HٿUHT$Ht$HٿUH=u4! HH4SHD$Ht$H}HKLD$HPHv H|$H/t9H|$H/t7t$HRH\$(dH3%(Hu4H8[]HWR0HOQ0H|$H/u L_1AS01f.AVAUIATULSH^H^H)HSIHF(HVH|t}Hڂ7IH+$)HH9SLHL!M9u []A\A]A^H+$)HSIڂ7HL97S[IL]LA\LA]A^[HL]A\A]A^fG(SHG@HW0H|f.UH dP!SHHHH<H(H- dH%(HD$1LD$Hl$HD$H9HxH53!H9u]1҃xPHsH|$HRH|$HH|$H.!HL$dH3 %(HuEH([]1zRH: H5S01H8躗HD$Hi1UHSHnHlRHuHH1H=:H+QRH[]ff.SHHHH0dH%(HD$(1Ht$ Rtl1HD$ {PH|$¹HpgH|$ H/tAHQH|$HH|$Hx-!HL$(dH3 %(HuH0[1HWHD$R0HD$sSHHQHHnH+uHCD$HP0D$f.:P{Hf[:uD$mHQD$ff.GuHW0HG@H|t H_ HH Hff.AWAVAUATUSHHH(dH%(HD$1HS{HŃJIHlSE xHd;H=8HDIM&SH}1E1HHRH=]O!HE1LL1IHE%Mt L+!Mt I,$RMt I.RMt ImRHt$dH34%(HH([]A\A]A^A_ÀeH|$HHEL|$MR1LHHHyH|$IHnRE1L;L$}0GL $A0IcHHL $KDILH{ IH*!H}(y*!EH=B64IHtQ1H=71E1HHeHQ_ff.@SHcH4SHߺH[fSH3HSHߺH[fAUATIUHSHXdH%(HD$H1D$HD$֒H*HHT$1HH56 H|$HHWHD$@D$foKfo KHD$8HD$@D$L$(IHH=R,!HHH?I9IIt$H}Ll$HKHT$LD$;t$Hߓu7HL$HdH3 %(HHX[]A\A]úHL9HHmu HuHV01HuH=+!IHH^1H= H5c11H?aqI1(AWHAVHAUATUSH8LD$H9BTH IHT$IHIHHHcHSH H9SAII9tMIMI9hLHdH{IHTHgHD$HkTHQHD$ H3TIHLLH|$LHLLl$ HLL9T1HLTZTH|$HS@THLSHt$H>H|$(HQHD$E1E1E1H@PTLNIHIHHHHIHIAIERHHIHLHIAH9LH#NJ@E@LHHT$H9PRH#NJLHILHKIIL9|$(qL\$LD$LT$ HKO OI9JRH9_RLH)L9v ILHL\$H+L\$HIHIHHL9HQLHIH)L9}ILHH@PT跞IHIIHHIII6QHILLHE1LI#NJA1L9LLHT$L9PE1H#NJHHIHHyH|$,$!H|$ !$!Lt$HD$H8[]A\A]A^A_K:QQDAWIAVMAUIATIULSHHD D3 AHQHI(H|t;IHLLHLLY'HHL[L]A\A]A^A_='I|$MD$(I|ALF1L7MH[]A\A]A^A_ILHLDL$;DT$u?DAA$aEtj1L1LMHHLL[]A\A]A^A_1L1LMOALnff.ATIUHSH0dH%(HD$(1D$聋Hra1Ht$ HHHF1Ht$HLFH=J%!HHaH=2%!݇IHaHD$HT$ H}It$LL$LCHHHRH|$ H/H|$H/uHwV0t$H諌uC1LH=.H I,$`Hm`HL$(dH3 %(u_H0[]A\I,$u MT$LAR0HmP`L]HAS01HD$ H|$ H/`HD$HOQ0E fATIHH5S-USH@dH%(HD$81HL$(HT$0D$  HT$0Ht$ LEHT$(Ht$LDH=#!>HHi`H={#!&HH_HD$HT$ H{HuLL$MD$HHHRH|$ H/uHOQ0H|$H/uHwV0t$LuF1HH=%-H) Hm_H+V_H\$8dH3%(uJH@[]A\1Hmu LUHAR0H+uL[HAS01H|$ H/uHOQ01U DATIUHSH dH%(HD$1D$AH_HHt$H1HCHl$1Ht$HLdCH="!谄HHl_HD$Ht$H}HKLD$HPHv@H|$H/tDH|$H/t0t$H莉_HT$dH3%(Hu1H []A\HOQ0HWR0H|$H/^Hl$- ff.fATIUHSH dH%(HD$1D$H@_HHt$H1HSBHl$1Ht$HL4BH= !考HH^HD$Ht$H}HKLD$HPHvH|$H/tDH|$H/t0t$H^^HT$dH3%(Hu1H []A\HOQ0HWR0H|$H/M^Hl$ ff.fAWfIAVIAUIATMUSHHfo>dH%(H$1H$H$D$@0L$HD$XHD$hD$0L$D$(HT$8AIOIw(H|L9aHl$MMLLHH=D$  H{LC(I|LKALKM)MWMWIHL$(Ht$8L\Iɚ;I'tIcI LcH<$JHI9H|$ H|$HLD$pLljD$qAEAD8PуHMHLH $`HHbxju|$uaD$@`i`D$G``LLHmH$dH3%(|Hĸ[]A\A]A^A_Ã<$LLHHMLLLHvuAt}LH蜺MVM^(K|u!_I?Bv# IIsIbIQA^LLHLLHiH?zZI9^Hc I9^Io#M9~^IƤ~M9׃I#NJHH[_$LD$M9E_5DUH t6!HHSHHm&H8H8 dH%(HD$(1LL$LD$ D$H\$\HL$H9HD$HHHt$H=HL$HT$ Ht$<H=!I~HH^HT$Ht$LD$H|$HJHVHwHxDH|$H/m^H|$H/t,t$H|$u$HT$(dH3%(HuRH8[]LGAP0H+u LKHAQ01HyH5!H9 9^H|$H/]1ff.UH 8!HHSHH$H(H dH%(HD$1LD$D$ H\$HD$H9urJHD$HH=E!|HHHt$HxHL$ HVHuYt$ H|$uMHL$dH3 %(HuNH([]HxH5!H9tuH% H5>1H:H+u HKHQ01qUH 3!HHSHH#HPHx dH%(HD$@1HD$D$ H\$P1LL$8LD$@ZYAHL$H97HD$H HHt$ HT:HL$HT$0Ht$3:aHL$HT$(Ht$:H=!^{HHaHt$H|$ LL$HL$LD$HVHwHIHxM@0H|$ H/eaH|$H/tCH|$H/uL_AS0t$H|$u(HH\$8dH3%(HH[]LWAR0H+u HkHU01HyH5!H9`H% H5>1H:H|$ H/`H|$H/|`1d`UHHHSH(dH%(HD$1Ht$D$ 8tlH=K!yHHeHD$H{HL$ HUHp*H|$H/t2t$ H~eHL$dH3 %(HuH([]1HWR0@UH 3!HHSHH H(H dH%(HD$1LD$D$ H\$HD$H9toHxH5!H9H=T!xHHtVHt$HxHL$ HVHu)t$ H|$}u-HL$dH3 %(HuUH([]{HD$Hu1H+uHKH1Q0qH H561H:}ff.fAWfAVAAUIATMUHHSHxfo t4dH%(H$h1H\$0HD$`$0HD$IL$HD$(IUHKHHHT$0H-/Ht$0LL-A$gMILHH1$ffH$hdH3%(uHx[]A\A]A^A_ff.@AWIAVIAUIHATUH͹ SH( dH%(H$ 1H\$ HAuD$D@#gI}(IMHTH%@UHɚ;H'HcH L1HHI;IUIULbLM3HI;F(gA~,Uffo2fL$H$L$L$Ƅ$0$$L$Ƅ$0$$H$Ƅ$0$$L$D$P0L$XD$hLT$xM9zeMH$H{D$HH$HL$L$IH4$L\$H|$HT$HL1IHT$ LH$Lfo"2MGMGL+D$ $L$HDŽ$ѪMLD$HH|$LLLL$ LD$HLH<$LAu=MWM_(K|t-$ $EH4$H|$>Ev(HT$0HLHt$ Dt$HiHHL+$c$c(d$ddD$PddH$ dH3%(H( []A\A]A^A_H?zZH9wHvHH9IrN L9EcII9Ѓ H?MuMuLHL@1:CHHLIIc L9(dIo#L9.dIƤ~I9ЃnH?BvjHbHGHHnH+I TI9Ѓ L蚬HL) HLҬ_ MHD$_cjc@UHHHSH(dH%(HD$1Ht$D$ 0tlH=K!qHH+cHD$H{HL$ HUHpH|$H/t2t$ Hv cHL$dH3 %(HuH([]1HWR0@UH +!HHSHHH(H dH%(HD$1LD$D$ H\$HD$H9toHxH5!H9H=T!pHHtVHt$HxHL$ HVHut$ H|$uu-HL$dH3 %(HuUH([]sHD$Hu1H+uHKH1Q0qH H56 1H:}ff.fUHHHSH(dH%(HD$1Ht$D$ .tlH=[ !pHHcHD$H{HL$ HUHpo.H|$H/t2t$ HtbHL$dH3 %(HuH([]1HWR0@UH )!HHSHHH(H dH%(HD$1LD$D$ H\$HD$H9toHxH5!H9H=d !oHHtVHt$HxHL$ HVHu|-t$ H|$tu-HL$dH3 %(HuUH([]qHD$Hu1H+uHKH1Q0$qH- H5F 1H:ff.fUHHH= !SHdH%(HD$1D$@HgHuHxHHT$ t$H2suHL$dH3 %(HuH[]H+hgHCH1P0AWAVAUATUSQH H cH Hի H !=*!H!Hq!Hb!hHY *!L% L It$`MZ`H~LLN(Mk@H5H=*!IL*!L *!L-*!aH*!HkI$H5aHs*!HkL5c H= !L5 !L5 !L5W !L5!kHkH=| !W4kH=!C kH=!/ kH= HHjH= !HH5ijH= !HH5KjH+jH=HHjH5H"HH iHH !1HnH5HiH(iH5~HH(!HiHmiH+iH=SIHiHLD1H PHVH5TbIH(!HgH=HH!iH5p(!HHH5fH+WhH5L HHhH= I1H !HH5IH(!HmfI,$gH+gH=C !IHhH!H5HHy!gH !H5hLH!YgHo'!H5LH7gH=E 1H7H=IH"'!HeHHH5LSf IH'!HeeL=W%!AAA@yH5&!1_HH~fI1H2IIHdH+-fIILH6fIH'!IcAI HH\AtNEAt59AIL IH5%!1H:L H ^$!L5#!H p#!M&MA~H58$!1NHHmeI~1H$IIFHcH+eIVI6LH2eI H j$!H$!1H5u$!HtH$!H5Z$!1HRL% 1I$HD1H=F!qHHo%!HdHHH5LcH=HH%!H\dH* H5LHb1H=!HH$!HdHHLAH"Ifo#I Hp0H5'Lx H@(KLp8@P@'Vb1H=F!qHH_$!HcAHHLI!fo 2#Lx H5H@(L@0Lp8@PHaL=x!IHt1IHH&cI7HL}aIH-#!LeMea1L=B M4/LL O#!HI)HbHHLLLaHH@uHH5 L$aH H5 LxZL[]A\A]A^A_`HHvalid values for signals are: [InvalidOperation, FloatOperation, DivisionByZero, Overflow, Underflow, Subnormal, Inexact, Rounded, Clamped]optional argument must be a context{:%s, :%s, :%s, :%s, :%s, :%s, :%s, :%s, :%s}internal error in flags_as_exceptionvalid values for capitals are 0 or 1argument must be a sequence of length 3sign must be an integer with the value 0 or 1string argument in the third position must be 'F', 'n' or 'N'coefficient must be a tuple of digitsinternal error in dec_sequence_as_strargument must be a signal dictvalid values for rounding are: [ROUND_CEILING, ROUND_FLOOR, ROUND_UP, ROUND_DOWN, ROUND_HALF_UP, ROUND_HALF_DOWN, ROUND_HALF_EVEN, ROUND_05UP]invalid decimal point or unsupported combination of LC_CTYPE and LC_NUMERICinternal error: could not find method %svalid range for Emin is [MIN_EMIN, 0]internal error in context_settraps_dictinternal error in context_setstatus_dictcontext attributes cannot be deleted/builddir/build/BUILD/Python-3.6.8/Modules/_decimal/libmpdec/typearith.hmul_size_t(): overflow: check the contextadd_size_t(): overflow: check the contextinternal error in context_reprContext(prec=%zd, rounding=%s, Emin=%zd, Emax=%zd, capitals=%d, clamp=%d, flags=%s, traps=%s)valid values for clamp are 0 or 1valid range for Emax is [0, MAX_EMAX]valid range for prec is [1, MAX_PREC]sub_size_t(): overflow: check the contextinternal error in context_settraps_listinternal error in context_setstatus_listconversion from %s to Decimal is not supportedinternal error in PyDec_ToIntegralExactinternal error in PyDec_ToIntegralValueinternal error in dec_mpd_qquantizecannot convert signaling NaN to floatoptional argument must be a dictformat specification exceeds internal limits of _decimalcannot convert Infinity to integeroptional arg must be an integercannot convert NaN to integer ratiocannot convert Infinity to integer ratio/builddir/build/BUILD/Python-3.6.8/Modules/_decimal/libmpdec/mpdecimal.clibmpdec: internal error in _mpd_base_ndivmod: please reportCannot hash a signaling NaN valuedec_hash: internal error: please reportargument must be a tuple or listexact conversion for comparison failed/builddir/build/BUILD/Python-3.6.8/Modules/_decimal/libmpdec/context.cmpd_setminalloc: ignoring request to set MPD_MINALLOC a second time argument must be a contextcannot get thread stateargument must be a DecimalTrueFalseFInfsNaNexponent must be an integer%s%lisignal keys cannot be deletedinvalid signal dict%s:%d: error: +Infinity+Zero+Normal-Subnormal-Infinity-Zero-Normal+Subnormal%s, O(nsnniiOO)|OOOOOOOOargument must be an integerO|OOO(O)Decimal('%s')-nanformat arg must be str.,invalid format stringdecimal_pointthousands_sepgroupinginvalid override dict(i)cannot convert NaN to integer%s:%d: warning: (OO)OO|Oargument must be int of floatnumeratordenominatoras_integer_ratiobit_length__module__numbersNumberregisterRationalcollectionssign digits exponentDecimalTuple(ss)namedtupleMutableMappingSignalDicts(OO){}decimal.DecimalExceptionDefaultContext___DECIMAL_CTX__HAVE_THREADSBasicContextExtendedContext1.70__version__2.4.2__libmpdec_version__ROUND_UPROUND_DOWNROUND_CEILINGROUND_FLOORROUND_HALF_UPROUND_HALF_DOWNROUND_HALF_EVENROUND_05UPROUND_TRUNCcopyprecEmaxEminroundingcapitalsclamp__enter____exit__realimagexplnlog10next_minusnext_plusnormalizeto_integralto_integral_exactto_integral_valuesqrtcomparecompare_signalmax_magmin_magnext_towardquantizeremainder_nearfmais_canonicalis_finiteis_infiniteis_nanis_qnanis_snanis_signedis_zerois_normalis_subnormaladjustedconjugateradixcopy_abscopy_negatelogblogical_invertnumber_classto_eng_stringcompare_totalcompare_total_magcopy_signsame_quantumlogical_andlogical_orlogical_xorrotatescalebshiftas_tuple__copy____deepcopy____format____reduce____round____ceil____floor____trunc____complex____sizeof__adddividedivide_intdivmodmultiplyremaindersubtractpowerEtinyEtop_applycopy_decimalto_sci_stringclear_flagsclear_trapscreate_decimalcreate_decimal_from_floatgetcontextsetcontextlocalcontextMAX_PRECMAX_EMAXMIN_EMINMIN_ETINYdecimal.SignalDictMixinotherthirdmodulodecimal.InvalidOperationdecimal.ConversionSyntaxdecimal.DivisionImpossibledecimal.DivisionUndefineddecimal.InvalidContextdecimal.ContextManagerctxdecimal.Decimaldecimal.FloatOperationdecimal.DivisionByZerodecimal.Overflowdecimal.Underflowdecimal.Subnormaldecimal.Inexactdecimal.Roundeddecimal.Clampeddecimal.Context6h6hlg0npnqqql0qHrpqqrpnrs`h!zօgc@ h  uuuuv`wtvD||"|~z]|h|4zs|//d//////0///$`%~5 w.YK=Se@aB(e f5D~/B.B0gh,=g8E% k:Z>q(ZTn!sӠx&RwZsj_2 ph`:~APl oVyK+[ hiGwp m^C,?̇v0,^y(Ft=JL8G[P)*CEh:!yk0ׄv\B6` '2%k€"aD2^.-.x r16H6a6lRi83-f:\ oG(?r/ف-AB%f¿z=#z?Z=;976420/-+)(&$"!   }|zywvtsrpomljihfecb`_^\[YXVUTRQPNMKJHGFDCB@?><;98754210.-,*)(&%$"!     ~|{zyxwvtsrqponmljihgfedcba_^]\[ZYXWVTSRQPONMLKJIHFEDCBA@?>=<;:986543210/.-,+*)('&%$#"!   @ @ @ @ @ @ @ @ d'@Bʚ; TvHrN @zZƤ~o#]xEcd #NJ?B c c @cd XLIcd cd d d ? ?B9$|k?䌄_wC_"@CCKvl?x??;,DXH8p hVH8k-8@p(,nq4\c? Bl (!x!!4"\""l#<#H4$|$ %H%`(&sx&&&4'p(G)v))<*p**+>x,,@-D-Nx../N0g0yT15122G33L5p`57\77'8Ed8c8v::';.l;q0<<Td==>@>>H>e8?u??@@@=AHAA!AmBHBB B@CvhCCSDDDcDD|EDEnEE?F~tF$GdGGC8HxHHLIIJ`J:JKdKDLTL L@MMGM,NWNOTOO 4P=PEPL0QSQpQ \R*R S!>!h?"8@H"x@p"@"XA#B#HB$B$B$B$C,%8C@%C\%Cx%C%C%D%D&hD&DH'D\'Ep'HE`)E)HF)F*HG/G3H5I5J(6xKx6XL(7L7Mx8O88P$9Ql9R9S9T;U;8V<xW=Xx=XY=Z>ZT>8[p>[>h\?\L?]h?^?^?8_?_@h`8@a@Hb\AcAdBe\BHfBgBgCh|ChjCkD8mXDnD8pDqEXsXEtE8vFvxG} HHH IIȎ4JXJ8KxKؓK(K(LhLLXMMHNNx(O8hOhHPPXQSTTThUHUت4VWhX8Y(Yx:  : : : : ( :gEGD k AAA D PAAf A XH<x lAAf A X|&L 9FAA O ABE W DBA A GBE AGB AAB :0, ;VBHD D({ DBBx` ;[BB B(A0A8 0D(B BBBJ `8Z O8 zRx 8(U NCH( BHB E(D0D8DP 8A0A(B BBBA t `S  $ MAKD xDA e (N>Hu M 8N0 ,FD O=X ,Ol 6 0 QJBDA G@  AABA zRx @$mH SBIO B(A0D8D 8A0A(B BBBL $zRx ,Ӳ/$p TUD D T L [ E T Ʋ SA SA V P\,V@βTT@1(hlEHT0p AAA `β  5($EHT0p AAA r "$V8X-L+($`YADA PAA(XADGo AAA ױ(XENN0i AAA  =0DDXBEL E(H0C8FP8A0A(B BBB zRx P(DLFAA JeDEAPZ  AABA zRx $:$T/AGE _AA $XAG @ AA 0XbBDC G0H  AABA zRx 0$ b0XdBDD G0I  AABA l&ad>x"" 4pXXBMA D(J0s(A ABB`="FE@0$FE@LX`T tP L (WZEGA o AAA LXLEk A Z0 $XH  K O A zRx  `KFAA`Ѯ FD}d HYBBB B(D0C8GP 8D0A(B BBBA lYh"0"D"\X]UEF L(K0D8 0A(B BBBA kA8`_BBB B(A0D8DJ 8G0A(B BBBE 8J0A(B BBB$zRx (,) 8A0A(B BBBE p`XEk A N A 0aNEW T 4daoBEI A(J0M(A ABB\+/4aJDG _ AAJ `F (4}EKD0a AAA ,(t }EKD0a AAA l8`BEA G(D@} (A ABBA zRx @$nf$aZKF E (ih(\8aAAD0~ AAA TŮ(aaDJ @ FAA $ORGK cFATbBBB B(A0A8H Q GW 8A0A(B BBBA $zRx ,s'L@e_iAA   ABH L FB\ C RPPg:FBB A(D0D@HDPAXM`Q@[ 0A(A BBBA zRx @(`heIS A Fd T@hBBB B(A0A8H Q GЁ 8A0A(B BBBA $zRx Ё,u8(jBEA D(G0b (A ABBA  XxkUEB E(K0D8h0E(B BBBKH8LlBBB B(A0A8G  8A0A(B BBBA $zRx  ,έd`rU _BL B(D0D8GP 8A0A(B BBBI PP, h} FBB B(A0J8DEHMNGGV@ 8A0A(B BBBO $zRx ,n<<LIF A(E0M (D BBBA P?AKqApf BHB R(A0A8O 0A(B BBBH  0A(B BBBG  0A(B BBBP 0p BAD G0  AABA  H̔wBBE B(D0D8A@l 8A0A(B BBBA zRx @(H<ȕBEB B(A0A8D 8A0A(B BBBA $zRx ,Q(`6ADD e AAA =L `8 BFE E(D0D8G% 8A0A(B BBBP $zRx ,GPD a BIB B(A0D8~ 0A(B BBBE ; (.MBB E(A0D8GPz 8A0A(B BBBA  8A0A(B BBBA oSPAP0H!OBEE E(D0D8DP 8A0A(B BBBA \!`BEE D(D0_ (D HBBE i (A EBBE A(A BBB(D"gADG0S AAA \p"ԴBEE D(D0a (D HBBE Y (A BBBA Q(A DBE,"=AEG AAA zRx $$4#gADG0XAAL\#HBEE D(D0T (D HBBE M (A BBBA L#BEE D(D0T (J BBBE N (A BBBA L#hBEE D(D0T (D HBBE M (A BBBA LL$BEE D(D0T (D HBBE M (A BBBA H$xBED D(G0n (J ABBE U (A ABBA \ 0$(FDA D0  AABA LHD%pBED D(G0g (J ABBE i (A ABBA !J0% FDA D0  AABA H%X8FBB B(D0A8D` 8A0A(B BBBA  ٪DL&nBBE D(D0G 0A(A BBBA zRx (w(&#ENN@ AAA D& BBE D(D0G 0A(A BBBA <@'TBEE D(D0I (A BBBA ('#ENN@ AAA @'BBB K(D0D@ 0A(A BBBA  R5H(" BBE B(A0D8DpD 8A0A(B BBBN zRx p(|@(,dBBE A(K0D 0A(A BBBA zRx (8) BED D(G@} (A ABBA TC0T){AG a GI c AA MK()L#ENN@ AAA L)pBBB B(A0A8D 8A0A(B BBBA  9H*BBB I(A0A8D@Z 8D0A(B BBBD d*pEQP AA (*|6EAQP AAA zRx P L0*`LFAN DP  AABA zRx P$K(L+HEGL@W AAA zRx @ ר(+|EJI@ AAA `6(+EJI@ AAA 6(,|QH  A (D,EJI@ AAA n6 ,@pER0R AA zRx 0 P,\H0] A zRx 0% -H0Y A <-H0] A hl-xH0Y A -H0] A -LH0] A  -ER0Y AA .( ER0Y AA (0.UEAQP AAA L(p.6EAQP AAA !L(.$ 6EAQP AAA ,-L(.6EAQP AAA l9L(0/ 6EAQP AAA EL(p/!6EAQP AAA QL(/$CEAQP AAA ,]1(/"EJI@ AAA N6(00$#EJI@ AAA D6(p0#EJI@ AAA (:6(0$$EJI@ AAA h06H0$FHB B(A0I8Dp 8A0A(B BBBA d(P1T%ENNP& AAA *y(1&:ENN` AAA zRx ` G{(1'ENNP- AAA h(,2(nENNP" AAA ק(l2*ENNP& AAA 7y(2X+ENNP& AAA (py(2,ENNP& AAA hy(,3-ENNP AAA y0l3DFDD D@  AABA &X03/5FDD D@  AABA 8'#?H3x#BLE B(D0D8G` 8A0A(B BBBA .(\4/Qab A L<|4(~FBB A(A0< (A BBBA 84hBED D(G@ (A ABBK  zL( 5AAG0U AAA .$dL5/QBBB B(A0D8Dp 8I0A(B BBBI  8A0A(B BBBE (h .- 8A0A(B BBBA (55ENNP AAA \ y( 66EAQP AAA  QH0i A H8>\BIE E(D0A8GP# 8D0A(B BBBO -(>LQFFDG qAB<L? FEB B(A0A8U} 8A0A(B BBBC $"L|?FJB E(A0D8D 8A0A(B BBBA H pL? FGB B(A0A8Qv 8A0A(B BBBL "LD@`OFMB B(K0H8F/ 8A0A(B BBBA !bH@LBBE B(D0A8G` 8A0A(B BBBP ;m`A|BEA D(G@X (J ABBF  (A ABBA  (H DDBE )b0ANmFHJ K  AABA zRx $'(AOEJI@ AAA }64(B FHJ K  AABA g'(tB@PEJI@ AAA ,N6PBPaBE D(D0i (A BBBA QO00C-H0Y(A BBBLHLfBEE B(D0A8DD8A0A(B BBBLLEe BBB E(D0A8J 8A0A(B BBBE $zRx ,8pMPxBBD D(G@Y (A ABBA 5HMBEH H(A0D8J8A0A(B BBBH N:sBEE B(D0A8GN8A0A(B BBBLXN,PBFE B(D0D8Js 8A0A(B BBBB $zRx ,5|NpWBEE E(D0D8GPK 8G0D(B BBBE A 8A0A(B BBBA c 8J0A(B BBBE <>wf 8L0A(B BBBE a8C0D(D BBB0O@XFDD DP%  AABA $0OYFNA D`7  AABA zRx `$ֹHTPVwBIB E(D0D8J 8A0A(B BBBA $zRx ,G0PHZ#FDD D@  AABA `DX($QpWUEAQP AAA & LHdQXuBFE E(D0D8J 8A0A(B BBBA 0QZ#FDD D@  AABA HEX( RhYUEAQP AAA 'عLLLRZBIE E(D0D8G 8A0A(B BBBA $zRx ,LRZBIE E(D0A8J  8A0A(B BBBA $zRx  ,^(dS]ENNP AAA (y(S_6EAQP AAA  )WLLS`BFE B(A0A8J 8A0A(B BBBA $zRx ,(pTeEJI@ AAA ()6(T4^ENN@ AAA LTheBIE B(A0D8J  8A0A(B BBBJ $zRx  ,7(hU|sHEAQP AAA *18Ut%FBD D(D@ (A ABBC =b@UlwBBB D(D0GPl 0A(A BBBA zRx P(|4tV]ENNhjpRhA`, AAA $ɿ(VDwEAQ`& AAA 4% _@WxBSO D(D0Q 0A(A BBBA zRx (8H|W(zFBB B(A0A8G~ 8A0A(B BBBC $zRx ,@X`~fFBB A(A0Q` 0A(A BBBA h1@\XxVFBB D(D0DP 0A(A BBBA hÿXLXBFE B(A0A8G 6 8A0A(B BBBA $zRx  ,L@YBEE E(A0D8Gb 8A0A(B BBBA $zRx ,(YH\EJI@ AAA .q6( Z\#ENN@ AAA L8ZBNE B(A0A8J 1 8A0A(B BBBA $zRx  ,LZ/BIB B(A0D8J 8A0A(B BBBM $zRx ,HP[\BFE E(D0G8G 8A0A(B BBBA  <L[T] BEE H(A0I8G; 8A0A(B BBBA $zRx ,(<\aEJI@ AAA 0-6(|\Xb#ENN@ AAA L\<BEE B(D0A8J3 8A0A(B BBBA CL ]xsBIK E(A0D8J9 8A0A(B BBBA O(p]bEJI@ AAA (26(]c#ENN@ AAA L](wBIE B(A0D8G M 8A0A(B BBBA $zRx  ,?Lh^BEE E(D0A8D 8A0A(B BBBH tAW8^hFED D(D` (A ABBA $c0_EHThspRhA` AAA -zLd_BBB B(A0D8G 8A0A(B BBBK 0@.8_ܪ"FOK A(D (A ABBJ =(`EDG  DAA HD``FBE B(A0C8J 8A0A(B BBBN $zRx ,g(`(aEND0b AAA YH aXFBB B(N0A8D 8A0A(B BBBC @KHla(aFBB B(A0A8A@ 8D0A(B BBBA BMGNU$A@@ $`$ $ '5EU`Ufp ^ |$$o`  ($V = oo@oo>of$^__ _0_@_P_`_p_________`` `0`@`P```p`````````aa a0a@aPa`apaaaaaaaaabb b0b@bPb`bpbbbbbbbbbcc c0c@cPc`cpcccccccccdd d0d@dPd`dpdddddDecimal(value="0", context=None) -- Construct a new Decimal object. 'value' can be an integer, string, tuple, or another Decimal object. If no value is given, return Decimal('0'). The context does not affect the conversion and is only passed to determine if the InvalidOperation trap is active. Context(prec=None, rounding=None, Emin=None, Emax=None, capitals=None, clamp=None, flags=None, traps=None) -- The context affects almost all operations and controls rounding, Over/Underflow, raising of exceptions and much more. A new context can be constructed as follows: >>> c = Context(prec=28, Emin=-425000000, Emax=425000000, ... rounding=ROUND_HALF_EVEN, capitals=1, clamp=1, ... traps=[InvalidOperation, DivisionByZero, Overflow], ... flags=[]) >>> as_integer_ratio($self, /) -- Decimal.as_integer_ratio() -> (int, int) Return a pair of integers, whose ratio is exactly equal to the original Decimal and with a positive denominator. The ratio is in lowest terms. Raise OverflowError on infinities and a ValueError on NaNs. as_tuple($self, /) -- Return a tuple representation of the number. from_float($type, f, /) -- Class method that converts a float to a decimal number, exactly. Since 0.1 is not exactly representable in binary floating point, Decimal.from_float(0.1) is not the same as Decimal('0.1'). >>> Decimal.from_float(0.1) Decimal('0.1000000000000000055511151231257827021181583404541015625') >>> Decimal.from_float(float('nan')) Decimal('NaN') >>> Decimal.from_float(float('inf')) Decimal('Infinity') >>> Decimal.from_float(float('-inf')) Decimal('-Infinity') shift($self, /, other, context=None) -- Return the result of shifting the digits of the first operand by an amount specified by the second operand. The second operand must be an integer in the range -precision through precision. The absolute value of the second operand gives the number of places to shift. If the second operand is positive, then the shift is to the left; otherwise the shift is to the right. Digits shifted into the coefficient are zeros. The sign and exponent of the first operand are unchanged. scaleb($self, /, other, context=None) -- Return the first operand with the exponent adjusted the second. Equivalently, return the first operand multiplied by 10**other. The second operand must be an integer. rotate($self, /, other, context=None) -- Return the result of rotating the digits of the first operand by an amount specified by the second operand. The second operand must be an integer in the range -precision through precision. The absolute value of the second operand gives the number of places to rotate. If the second operand is positive then rotation is to the left; otherwise rotation is to the right. The coefficient of the first operand is padded on the left with zeros to length precision if necessary. The sign and exponent of the first operand are unchanged. logical_xor($self, /, other, context=None) -- Return the digit-wise 'exclusive or' of the two (logical) operands. logical_or($self, /, other, context=None) -- Return the digit-wise 'or' of the two (logical) operands. logical_and($self, /, other, context=None) -- Return the digit-wise 'and' of the two (logical) operands. same_quantum($self, /, other, context=None) -- Test whether self and other have the same exponent or whether both are NaN. This operation is unaffected by context and is quiet: no flags are changed and no rounding is performed. As an exception, the C version may raise InvalidOperation if the second operand cannot be converted exactly. copy_sign($self, /, other, context=None) -- Return a copy of the first operand with the sign set to be the same as the sign of the second operand. For example: >>> Decimal('2.3').copy_sign(Decimal('-1.5')) Decimal('-2.3') This operation is unaffected by context and is quiet: no flags are changed and no rounding is performed. As an exception, the C version may raise InvalidOperation if the second operand cannot be converted exactly. compare_total_mag($self, /, other, context=None) -- Compare two operands using their abstract representation rather than their value as in compare_total(), but ignoring the sign of each operand. x.compare_total_mag(y) is equivalent to x.copy_abs().compare_total(y.copy_abs()). This operation is unaffected by context and is quiet: no flags are changed and no rounding is performed. As an exception, the C version may raise InvalidOperation if the second operand cannot be converted exactly. compare_total($self, /, other, context=None) -- Compare two operands using their abstract representation rather than their numerical value. Similar to the compare() method, but the result gives a total ordering on Decimal instances. Two Decimal instances with the same numeric value but different representations compare unequal in this ordering: >>> Decimal('12.0').compare_total(Decimal('12')) Decimal('-1') Quiet and signaling NaNs are also included in the total ordering. The result of this function is Decimal('0') if both operands have the same representation, Decimal('-1') if the first operand is lower in the total order than the second, and Decimal('1') if the first operand is higher in the total order than the second operand. See the specification for details of the total order. This operation is unaffected by context and is quiet: no flags are changed and no rounding is performed. As an exception, the C version may raise InvalidOperation if the second operand cannot be converted exactly. to_eng_string($self, /, context=None) -- Convert to an engineering-type string. Engineering notation has an exponent which is a multiple of 3, so there are up to 3 digits left of the decimal place. For example, Decimal('123E+1') is converted to Decimal('1.23E+3'). The value of context.capitals determines whether the exponent sign is lower or upper case. Otherwise, the context does not affect the operation. number_class($self, /, context=None) -- Return a string describing the class of the operand. The returned value is one of the following ten strings: * '-Infinity', indicating that the operand is negative infinity. * '-Normal', indicating that the operand is a negative normal number. * '-Subnormal', indicating that the operand is negative and subnormal. * '-Zero', indicating that the operand is a negative zero. * '+Zero', indicating that the operand is a positive zero. * '+Subnormal', indicating that the operand is positive and subnormal. * '+Normal', indicating that the operand is a positive normal number. * '+Infinity', indicating that the operand is positive infinity. * 'NaN', indicating that the operand is a quiet NaN (Not a Number). * 'sNaN', indicating that the operand is a signaling NaN. logical_invert($self, /, context=None) -- Return the digit-wise inversion of the (logical) operand. logb($self, /, context=None) -- For a non-zero number, return the adjusted exponent of the operand as a Decimal instance. If the operand is a zero, then Decimal('-Infinity') is returned and the DivisionByZero condition is raised. If the operand is an infinity then Decimal('Infinity') is returned. copy_negate($self, /) -- Return the negation of the argument. This operation is unaffected by context and is quiet: no flags are changed and no rounding is performed. copy_abs($self, /) -- Return the absolute value of the argument. This operation is unaffected by context and is quiet: no flags are changed and no rounding is performed. radix($self, /) -- Return Decimal(10), the radix (base) in which the Decimal class does all its arithmetic. Included for compatibility with the specification. conjugate($self, /) -- Return self. canonical($self, /) -- Return the canonical encoding of the argument. Currently, the encoding of a Decimal instance is always canonical, so this operation returns its argument unchanged. adjusted($self, /) -- Return the adjusted exponent of the number. Defined as exp + digits - 1. is_subnormal($self, /, context=None) -- Return True if the argument is subnormal, and False otherwise. A number is subnormal if it is non-zero, finite, and has an adjusted exponent less than Emin. is_normal($self, /, context=None) -- Return True if the argument is a normal finite non-zero number with an adjusted exponent greater than or equal to Emin. Return False if the argument is zero, subnormal, infinite or a NaN. is_zero($self, /) -- Return True if the argument is a (positive or negative) zero and False otherwise. is_signed($self, /) -- Return True if the argument has a negative sign and False otherwise. Note that both zeros and NaNs can carry signs. is_snan($self, /) -- Return True if the argument is a signaling NaN and False otherwise. is_qnan($self, /) -- Return True if the argument is a quiet NaN, and False otherwise. is_nan($self, /) -- Return True if the argument is a (quiet or signaling) NaN and False otherwise. is_infinite($self, /) -- Return True if the argument is either positive or negative infinity and False otherwise. is_finite($self, /) -- Return True if the argument is a finite number, and False if the argument is infinite or a NaN. is_canonical($self, /) -- Return True if the argument is canonical and False otherwise. Currently, a Decimal instance is always canonical, so this operation always returns True. fma($self, /, other, third, context=None) -- Fused multiply-add. Return self*other+third with no rounding of the intermediate product self*other. >>> Decimal(2).fma(3, 5) Decimal('11') remainder_near($self, /, other, context=None) -- Return the remainder from dividing self by other. This differs from self % other in that the sign of the remainder is chosen so as to minimize its absolute value. More precisely, the return value is self - n * other where n is the integer nearest to the exact value of self / other, and if two integers are equally near then the even one is chosen. If the result is zero then its sign will be the sign of self. quantize($self, /, exp, rounding=None, context=None) -- Return a value equal to the first operand after rounding and having the exponent of the second operand. >>> Decimal('1.41421356').quantize(Decimal('1.000')) Decimal('1.414') Unlike other operations, if the length of the coefficient after the quantize operation would be greater than precision, then an InvalidOperation is signaled. This guarantees that, unless there is an error condition, the quantized exponent is always equal to that of the right-hand operand. Also unlike other operations, quantize never signals Underflow, even if the result is subnormal and inexact. If the exponent of the second operand is larger than that of the first, then rounding may be necessary. In this case, the rounding mode is determined by the rounding argument if given, else by the given context argument; if neither argument is given, the rounding mode of the current thread's context is used. next_toward($self, /, other, context=None) -- If the two operands are unequal, return the number closest to the first operand in the direction of the second operand. If both operands are numerically equal, return a copy of the first operand with the sign set to be the same as the sign of the second operand. min_mag($self, /, other, context=None) -- Similar to the min() method, but the comparison is done using the absolute values of the operands. min($self, /, other, context=None) -- Minimum of self and other. If one operand is a quiet NaN and the other is numeric, the numeric operand is returned. max_mag($self, /, other, context=None) -- Similar to the max() method, but the comparison is done using the absolute values of the operands. max($self, /, other, context=None) -- Maximum of self and other. If one operand is a quiet NaN and the other is numeric, the numeric operand is returned. compare_signal($self, /, other, context=None) -- Identical to compare, except that all NaNs signal. compare($self, /, other, context=None) -- Compare self to other. Return a decimal value: a or b is a NaN ==> Decimal('NaN') a < b ==> Decimal('-1') a == b ==> Decimal('0') a > b ==> Decimal('1') sqrt($self, /, context=None) -- Return the square root of the argument to full precision. The result is correctly rounded using the ROUND_HALF_EVEN rounding mode. to_integral_value($self, /, rounding=None, context=None) -- Round to the nearest integer without signaling Inexact or Rounded. The rounding mode is determined by the rounding parameter if given, else by the given context. If neither parameter is given, then the rounding mode of the current default context is used. to_integral_exact($self, /, rounding=None, context=None) -- Round to the nearest integer, signaling Inexact or Rounded as appropriate if rounding occurs. The rounding mode is determined by the rounding parameter if given, else by the given context. If neither parameter is given, then the rounding mode of the current default context is used. to_integral($self, /, rounding=None, context=None) -- Identical to the to_integral_value() method. The to_integral() name has been kept for compatibility with older versions. normalize($self, /, context=None) -- Normalize the number by stripping the rightmost trailing zeros and converting any result equal to Decimal('0') to Decimal('0e0'). Used for producing canonical values for members of an equivalence class. For example, Decimal('32.100') and Decimal('0.321000e+2') both normalize to the equivalent value Decimal('32.1'). next_plus($self, /, context=None) -- Return the smallest number representable in the given context (or in the current default context if no context is given) that is larger than the given operand. next_minus($self, /, context=None) -- Return the largest number representable in the given context (or in the current default context if no context is given) that is smaller than the given operand. log10($self, /, context=None) -- Return the base ten logarithm of the operand. The function always uses the ROUND_HALF_EVEN mode and the result is correctly rounded. ln($self, /, context=None) -- Return the natural (base e) logarithm of the operand. The function always uses the ROUND_HALF_EVEN mode and the result is correctly rounded. exp($self, /, context=None) -- Return the value of the (natural) exponential function e**x at the given number. The function always uses the ROUND_HALF_EVEN mode and the result is correctly rounded. create_decimal_from_float($self, f, /) -- Create a new Decimal instance from float f. Unlike the Decimal.from_float() class method, this function observes the context limits. create_decimal($self, num="0", /) -- Create a new Decimal instance from num, using self as the context. Unlike the Decimal constructor, this function observes the context limits. copy($self, /) -- Return a duplicate of the context with all flags cleared. clear_traps($self, /) -- Set all traps to False. clear_flags($self, /) -- Reset all flags to False. shift($self, x, y, /) -- Return a copy of x, shifted by y places. scaleb($self, x, y, /) -- Return the first operand after adding the second value to its exp. same_quantum($self, x, y, /) -- Return True if the two operands have the same exponent. rotate($self, x, y, /) -- Return a copy of x, rotated by y places. logical_xor($self, x, y, /) -- Digit-wise xor of x and y. logical_or($self, x, y, /) -- Digit-wise or of x and y. logical_and($self, x, y, /) -- Digit-wise and of x and y. copy_sign($self, x, y, /) -- Copy the sign from y to x. compare_total_mag($self, x, y, /) -- Compare x and y using their abstract representation, ignoring sign. compare_total($self, x, y, /) -- Compare x and y using their abstract representation. to_eng_string($self, x, /) -- Convert a number to a string, using engineering notation. to_sci_string($self, x, /) -- Convert a number to a string using scientific notation. number_class($self, x, /) -- Return an indication of the class of x. logical_invert($self, x, /) -- Invert all digits of x. logb($self, x, /) -- Return the exponent of the magnitude of the operand's MSD. copy_negate($self, x, /) -- Return a copy of x with the sign inverted. copy_decimal($self, x, /) -- Return a copy of Decimal x. copy_abs($self, x, /) -- Return a copy of x with the sign set to 0. canonical($self, x, /) -- Return a new instance of x. is_zero($self, x, /) -- Return True if x is a zero, False otherwise. is_subnormal($self, x, /) -- Return True if x is subnormal, False otherwise. is_snan($self, x, /) -- Return True if x is a signaling NaN, False otherwise. is_signed($self, x, /) -- Return True if x is negative, False otherwise. is_qnan($self, x, /) -- Return True if x is a quiet NaN, False otherwise. is_normal($self, x, /) -- Return True if x is a normal number, False otherwise. is_nan($self, x, /) -- Return True if x is a qNaN or sNaN, False otherwise. is_infinite($self, x, /) -- Return True if x is infinite, False otherwise. is_finite($self, x, /) -- Return True if x is finite, False otherwise. is_canonical($self, x, /) -- Return True if x is canonical, False otherwise. radix($self, /) -- Return 10. Etop($self, /) -- Return a value equal to Emax - prec + 1. This is the maximum exponent if the _clamp field of the context is set to 1 (IEEE clamp mode). Etop() must not be negative. Etiny($self, /) -- Return a value equal to Emin - prec + 1, which is the minimum exponent value for subnormal results. When underflow occurs, the exponent is set to Etiny. fma($self, x, y, z, /) -- Return x multiplied by y, plus z. power($self, /, a, b, modulo=None) -- Compute a**b. If 'a' is negative, then 'b' must be integral. The result will be inexact unless 'a' is integral and the result is finite and can be expressed exactly in 'precision' digits. In the Python version the result is always correctly rounded, in the C version the result is almost always correctly rounded. If modulo is given, compute (a**b) % modulo. The following restrictions hold: * all three arguments must be integral * 'b' must be nonnegative * at least one of 'a' or 'b' must be nonzero * modulo must be nonzero and less than 10**prec in absolute value subtract($self, x, y, /) -- Return the difference between x and y. remainder_near($self, x, y, /) -- Return x - y * n, where n is the integer nearest the exact value of x / y (if the result is 0 then its sign will be the sign of x). remainder($self, x, y, /) -- Return the remainder from integer division. The sign of the result, if non-zero, is the same as that of the original dividend. quantize($self, x, y, /) -- Return a value equal to x (rounded), having the exponent of y. next_toward($self, x, y, /) -- Return the number closest to x, in the direction towards y. multiply($self, x, y, /) -- Return the product of x and y. min_mag($self, x, y, /) -- Compare the values numerically with their sign ignored. min($self, x, y, /) -- Compare the values numerically and return the minimum. max_mag($self, x, y, /) -- Compare the values numerically with their sign ignored. max($self, x, y, /) -- Compare the values numerically and return the maximum. divmod($self, x, y, /) -- Return quotient and remainder of the division x / y. divide_int($self, x, y, /) -- Return x divided by y, truncated to an integer. divide($self, x, y, /) -- Return x divided by y. compare_signal($self, x, y, /) -- Compare x and y numerically. All NaNs signal. compare($self, x, y, /) -- Compare x and y numerically. add($self, x, y, /) -- Return the sum of x and y. sqrt($self, x, /) -- Square root of a non-negative number to context precision. to_integral_value($self, x, /) -- Round to an integer. to_integral_exact($self, x, /) -- Round to an integer. Signal if the result is rounded or inexact. to_integral($self, x, /) -- Identical to to_integral_value(x). plus($self, x, /) -- Plus corresponds to the unary prefix plus operator in Python, but applies the context to the result. normalize($self, x, /) -- Reduce x to its simplest form. Alias for reduce(x). next_plus($self, x, /) -- Return the smallest representable number larger than x. next_minus($self, x, /) -- Return the largest representable number smaller than x. minus($self, x, /) -- Minus corresponds to the unary prefix minus operator in Python, but applies the context to the result. log10($self, x, /) -- Return the base 10 logarithm of x. ln($self, x, /) -- Return the natural (base e) logarithm of x. exp($self, x, /) -- Return e ** x. abs($self, x, /) -- Return the absolute value of x. localcontext($module, /, ctx=None) -- Return a context manager that will set the default context to a copy of ctx on entry to the with-statement and restore the previous default context when exiting the with-statement. If no context is specified, a copy of the current default context is used. setcontext($module, context, /) -- Set a new default context. getcontext($module, /) -- Get the current default context. C decimal arithmetic moduleLl$D$  $h($$`0# $` $$`b`0P`!$ $$pKplq (v{`0@ ]XpK>$[zg@\$q[$oZ$ŠY$͊ Y$׊>W$V$0A`U$ T$c`S$6`R$8Q$w@Q$-PP$|P$50 `O$=  N$IP`J$RbH$adG$eF$r`F$|E$@`E$pE$@D$D$@NC$B$A$ȋp A$h `@$ыp @$ۋ`?$>$P=$<$01 <$ 8$K 7$%p: 3$3; 1$E0 @/$O-$\`-$h#,$sP-`,$G *$`@)$3 '$%$N$$ˆ>#$%LȌ@QҌQیP>MPx$fx$p x$nw$NJ`w$Šw$͊v$׊>@v$ҊPu$B`u$pCt$Bt$0j@t$t$s$`s$ y s$PYr$@Z`r$wr$-q$|P@q$5p$# p$=@p$Ipo$,0\@o$R`cn$6 n$?k$a~`k$Ej$K0i$ۋ`i$e@i$rh$|0h$ h$g$`g$g$f$P@f$?e$PhPe$@e$W`e$d$@d$p0d$ Pc$d"@c$Mb$%b$3b$Ea$\a$h @a$s`a$`I`$O@`$_$@5_$r@_$~_$1l^$ ]$r ]$z$@z$ɍ y$֍c ߍc XLI8>z$ $ cq{vxZ....:...׎J.&G?`X{s.&׎ώ@  :2@JBZRGA$3a1^!|_decimal.cpython-36m-x86_64-linux-gnu.so-3.6.8-51.el8_8.2.alma.1.x86_64.debugZ{7zXZִF!t/n7]?Eh=ڊ2N. xkea*&*P( i]+ӏ^@Y 0/Pe"5z«ۻuv|mʦ (=п^ˬI y.3x>\3qjL 0{G"TpIeӌw/ﹼ!(ƟL3p2wiEd] +T:M&N;)RQ*z҈"RVY?[ŴO!hp|',RD k]g58E 778gvKЮIG0zAfWk׸WNz"c h[YͨTJ)'z  v)V Vs~VMF@վoNnYH2#c]j4!zڠ]Md l)XAetՅم 6k2(!wَ$>! "?2x%gm"Y j]?$"7LЗ%VTA<)ᄥAޞ5Ó͕휒w:- A r^laږaaNTG89ik҂+yƷč\Lv\-~wgȩIZ;dvȴتN*練 #D#iyG÷I[H4T kif :Am@7A߃քǫo@tT8wI !Ql;v[WA{5/[u!dp|#S4rJVq9D^Qj u]艹̬h$8lNvS sYu|Ҕo=CZ3)&n rsε l<}Wv/P{2K#dݹ+9YRi=8#K1fɎeƮk*z{y~NsXM hn(<([o}7s@ M[s<02MuB mN~vYirCd>s+y Ȩ R6%}qvC(M"8,c"ZDϐj)|9f*QcagE~WV\#0j.w9pv y5T1^ih9N1|kFV0rGI>7\CK}L|P4jmSQv}8s6B6szܨKؤUۢO=Mv˄lO9KXK)xq 6Zycɂ*TWċ~\9|5e2u 0;k0ÒݵEΫOΙ Jiv'^)Ǣ}Ά?k^z씈ZQdx䬹ÆY˻ ]([c݄.ﶡ툰FEp ަ2]?UA?z< XbzEɴ$U!W`ܞZpT Û\ڣ_n vEԿ%sVRNѩw7REDèD_U'GpFj pmG W rVU(__Q=:uu:=z.q (LR ͥGYS`}gaN0qc4zfAn# f h cN/8; .P^uxM0\ OUMC' MWOS~Iʶ/HK!G*lRF_&06J.5l46e&l!qC{i-YYv.%ʪF\sm:D1>%a4ӦUke,%͸k3}>SEy*?"]rA1#`=|0`m 2.`JTsfA\7zuw-Kh[n JCI`ȩQ
y~ H*aCЊ>NMrGn&qSK̦iD+#q+k."<$!*m8ꐖIJ-M*]mclf<$閯!RvqyByIblH+zT7DtI1vE[EFw΁*hL}܏iN[ : g幥EF@2xӋ@;Q B0a]ϟ a-+v nd–&\]f֣ӠX7cֿMG|BzRÙST\/m\ (Y6d9Rk?]:>`[ga\o!%=50Q}pOscPFE .j_2NHYkpz=iш7|Ȋ(F/qա}[29o$E0V;*vPab#6]"`pM _3|xw%XwQ]fry x!%WN rhKk}˚_f2<`,<_}W367\PK y9 ~հ(Qr0on 2D\0j_tW!xq$FjDvS4 ^ 嗐9vf)/Ţ۷ ^ 2+ 8075YY@(BI0*WyRS.= RE$o L`&Gq]b8v"ʌ3֟: 2.%j*+X~Xa^v?J^f'z{͊n i?֯uA8ƱS\jmR`R L%N`fmBL[ӷEJKA.ĖsK)c]sg;*_n)u~(ƊX'Ηx0hPikawVuIFa,F9,K%*|]*JpYϚHVjG.sY^i&wqi?ݥaV+SŒ.6"{:islo0kʑ4xp eRxX`B,n~\[xe߿"[Ǭj䑃(fIN{1*Qm9R\ RI}ưKk[t]A1G&K9w&/=y<ѭS?S]dG{1{-kJr Vb MR ,hTjq8xD@ X`XƘJsVOdL "%*PdAm- y)|BXXI5%I`:<^ iNhw`7{·F-tӻNt c<^=E}N_.Ţ+S%jo^44B+^})۷ -ՎO'MUњc9caĊOmbf%T>Eo@@T =^BVVh^^c^^nddwjj}|| @|@|H" ,a $$$h $ ($( $ @~ @$@ Xd@$ dT(